TG RLE SOPY

AD-A228 470

IBM STARS REPOSITORY
GUIDEBOOK

DTIC

ELECTE
NOV09 1890

-B

April 30, 1990

Contract No. F19628-88-D-0032
Task IR40: Repository Integration

Delivered as part of:
CDRL Sequence No. 1550

Prepared for:

Electronic Systems Division
Air Force Systems Command, USAF
Hanscomb AFB, MA 01731-5000

Prepared by:

IBM Systems Integration Division
800 North Frederick
Gaithersburg, MD 20879

fu ot

2O

o«

—

Form Approved

REPORT DOCUMEMNTATION PAGE oM A 000,018

Puonc reoorung turden for this COltection Of MfOrMaticn 15 estimated 10 dverage 1 hour per response, including the time fCF reviewing INSLructicns, searcning existing data sources,

the data ded, and comoleting ana reviewsng the cotlection of Intormation Send comments re5aramng this curden estimate or any other aspect of this
<ollemon ot inlormation, inciuding suggeshons 0f reaucing thes ouraen to Washington Heaaaquarters Services, Directorate for Information Operations and Reports, 1215 jeffegon
Davis Highwavy, Suite 1204, Achington, VA 22202-4302, and 10 the Dttice of Management and Buaget, Paperwork Reduction Project (0704.0188), Washington, GC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
T T = | Apr 30519901 Final - - -
4. TITLE AND SUBTITLE . 5. FUNDING NUMBERS
) C: F19628-88-D-0032
6. AUTHOR(S)
R. Ekman
--""’"
// LY
N
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES}—" 8. PERFORMING ORGANIZATION *
cs s REPORT NUMBER \
IBM Federal Sector Division Lo
800 N. Frederick Avenue ,
Gaithersburg, MD 20879 !
9. SPONSORING / MONITORING AGENCY ‘NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
. L. - AGENCY REPORT NUMBER
Electronic Systems Division
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000 CDRL Sequence No. 1550
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

A

13, ABSTRACT (Maximum 200 words)

A guide to coftware reuse using the STARS Repository. This document contains the,
IBM STARS Repository Guidebook, STARS Repository User's Guide, and STARS Reusabi’lity
Guidelines. Each is described below.

IBM STARS Repository Guidebook. A guide to the STARS Repository, providing high-
) Tevel Information ror all users —- component reusers, component suppliers, and

repository administrators. The Guidebook is organized according to the specific
roles that users perform when using the system.

STARS Repository User's Guide. A guide on how to access and use the STARS Reposi-
tory. It provides the basic information needed to use the repository software, but
it is not a comprehensive guide to the VAX computer, on which the repository is
built.

STARS Reusability Guidelines. A set of Ada coding guidelines for component develop-
ment that emphas:.z% reusablllty. Code that fo}:k"]i.ows these guidelines will be easier

to reuse on multiple . nv._examples are provided illustratin
14, SUBJECT TERMS the guidelines. 15. NUMngi OF PAGES
STARS, software reuse, software reuse library, Ada coding 16. PRICE COOE
guidelines, Ada
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
;.r}%sc‘rs:zed by ANSI Std 239.:8

P N

e ®maiin

A e e e VT e e e 2P e 8D S A M e Fan Znf

5/ Abstract

\
™ This Guidebook provides high-level information for all users of the IBM STAR
describes how to use the Repository system in the context of software reuy

administrators.
This Guidebook defines 3
¢ i How to use the IBM STARS Repository,

" }Resources and capabilities of the Repository,s

® 7} Processes involved in managing repository assets; and

they are required to make full use of the Guidebook.

Abstract

A v an vt
 The Guidebook is organized according to specific roles that users perform when using the system.
It addresses the information needs of component reusers, component suppliers, and repository

3) Component standards for admission to and promotion within the Repository,

L]

[

{

[2

3’1' I+ Procedures for submission and usage of repository components;
1

U‘ g)The reuse process in the context of the STARS repository. ("/

The Guidebook is the key document in a suite of Repository guides. The other documents are the
STARS Reuseability Guidelines]IBMCode] and the I1BM STARS Repository User's
Guide[IBMUser]. These documents were separated from the Guidebook for practical reasons, but

Accession For
NTIS GRAGI & |
DTIC TaARB 0

Unaanounced

0
Justzﬁcation__\

.t e . et

syzoww
| Dibtribution

id —————
Ava‘{}gpility Codes

Avail and/or

Dist Special

|

]|

S /\ epository. It

Preface

The content of the Guidebook is tightly coupled to the IBM STARS Repository. It will be
reviewed periodically, incorporating the lessons learned from using the guidelines and procedures,
and updating as the Repository matures. In the short term, the Guidebook will help meet the
practical needs of the IBM STARS development teams. In the long term, it will serve as a baseline
element in a more automated software development environment.

The guidelines and procedures in the Guidebook apply to all IBM STARS team tasks. In
particular, they apply to Ada code and related documentation as it is admitted to and managed
within the Repository. The Guidebook serves as a starting point for development in future
increments of the STARS project.

The term ‘Repository” has developed several meanings within the software development industry.
In the STARS project, the term has been associated with a machine, a facility, and an application.
In general, this Guidebook uses the latter meaning, also referring to the Repository as a Reuse
Library.

This Guidebook was developed by the IBM Systems Integration Division, located at 800 North
Frederick, Gaithersburg, MD 20879. Questions or comments should be directed to the author,
Robert W. Ekman at (301) 240-6431, or to the IBM STARS Program Office.

Preface il

Table of Contents

Introductioniiiiiiiiiietiiiiiiitctocaattoacaaaaasatocassenanona
Reuse and the Repositorycii ittt ittt e ittt et e ce et reeeeanennnn
Definitions of Key Termscv it n ittt ettt aeeeaannnanens,

Repository User Roleso intiiiniiniinerrreoenansocoseeeassssssnnsasennns
Component ReUser ittt ittt ienannnneeoennnnnsoesonenananenas
Component Supplier i et
Repository Administrationi.tinntnn et et eientieeaeaaananaan
RepOSHOIy Manageriiuit ittt ittt ettt
Repository Libramancuinititinintin ittt
Topic Specialistottt i e e e e

) 8 L] 1 1 =

ACTONYMS ..ottt iiveeteresossseassarsssssesonosossssassssssssessssna

Appendix A. Reusing Componentsc.coitiiennnscenescocosssassnasens
ReEPOSIOIY ACCESS & v v vt v e e e ettt ae e aeenanenesnneeeeeeauennnessassensanans
Repository Menu Applicationituiiniriinn ittt
Component Reuser Proceduresiitiiiiii it innrietanrencenneenns

Appendix B. Supplying Componentsttt titionrnaonas
Component Supplier Proceduresttt ittt
Component Data Requirementsttt iiineinneneeneeneennns
Component Coding GUIdelinesottt neiinineneneenenenenennnn

Appendix C. Evaluating Componentsccoetiitinuineieencnesonnnsnnenns
Repository Content Managementohtiiueiintinneenisennnreneeanss
Organized Level (Entry to Repository) voiii ittt i iiii i iinnenanns
Filtered Level i i i it et et ittt
Certified Levelttt i it ittt eeeranreaanns
Component Evaluation Filters ittt iniineennnn
Topic Specialist Proceduresccvitieiniii i intneineneteeenennennnnn

Appendix D. IBM STARS Repository Systemcitiitiiiiiiiiiinrnerneenns
T) A T o PP
Repository System Facilitiescoiiiiiii it
Repository Capabilities vvve ittt it i e e
Repository Databaseon i e e e

Information Model it i i i e e i e e e

Database Table Definitions ottt e

Part Types i e e e '

 SF VL] - P
Component Classes ..o ovvvt it n ittt et ie ittt eneaeeeaaannens
Development Guidanceciiuni ittt in ittt ittt it e
05 o) T P
User Interfaceot i i i e i i et e e e

Table of Contents

Object Names

..

1171 [A

Table of Contents

I U S NV

e

BRI IR T VU SN YU S S

Introduction

Welcome to the IBM STARS Repository.

The IBM STARS Repository facilitates-the distribution and sharing of software, documentation,
and project information within the STARS community [RFP87]. It also serves as a bridge between
the STARS community and the software engineering industry.

In particular, the Repository

e stores and organizes designated material,

e provides capabilities for convenient searching and retrieval,

® provides capabilities for electronic dialogue (¢.g., mail, conferencing, etc.) among its user
community, and

¢ provides 24-hour access for convenient delivery or copying of material over government or
public electronic networks.

In addition, the Repository

¢ is an instance of the STARS software engineering environment, and
® presents a vision of the software reuse process model.

The Repository supports

e software engineering through the software reuse model,
¢ project coordination through work product sharing and prototyping, and
¢ contract administration by archiving deliveries.

This Guidebook is your introduction to the IBM STARS Repository. It gathers in one place all
the references, guidelines, and procedures related to the operation and use of the Repository
[IBM1540]. It will give you an understanding of the nature and scope of the Repository.

After skimming this guidebook, you should use the Repository system. Only through hands-on
exercise of the system will you become comfortable with it. A section in the Appendix of this
document describes how you can get an account and access the system.

The Repository is a maturing system with a component supply and problem correction process.
You will notice improvements in the Repository over what is described in this Guidebook. The
component content of the reuse library is dynamic. New components are added every week and
existing components are being reviewed.

You are encouraged to make the most out of the system and its features, and to report problems
and suggestions. The Repository support team is available and willing to help.

Reuse and the Repository

A repository is the primary support tool for software reuse and is a key element in project life cycle
integration [SEI89]. Without some form of a repository or reuse library, significant reuse on a
software development project is impossible. Reuse starts during carly phases of the project
[RSL87]. You must set goals for reuse and commit to not “reinvent the wheel”.

Introduction 1

Your project’s problem definition and solution is related to a particular domain or set of domains,
such as ‘software engineering’ or “air traffic control’. Likewise, repositories are related to specific
domains. To be successful with reuse, you must locate repositories that support the domains
related to your project. You must become familiar with the repository access and content as early
as possible.

The system engineers must define architectures with a view toward reuse. Requirements and
specifications must be defined recognizing the availability and capability of reusable components.
Reuse must be specified. If you start building without reuse specifications, you cannot take
advantage of the significant quality and cost benefits of software reuse.

During implementation you bring together the components from the repository. Large grain
components are most desirable. They will form the major parts of the solution. Small grain
components are incorporated while editing and developing new system elements. During new code
creation, you should keep open access to the repository. This will allow you to interrogate the
repository for candidate components as you develop code.

As you complete your project or incremental release, you should consider puiting key components
from your development into the repository. If you made modifications to repository components,
then you should return them as new versions. The reuse-repository model is a cyclic process, with
supply and consumption the driving forces.

The basic model of the Repository system consists of three user environments: the repository
platform, the software engineering environment, and the external casual user system. The
repository platform consists of two major elements: the Repository application and the user
communication mechanisms. The software engineering environment consists of a collection of
100ls coordinated through an object manager. The external user system provides access to the
repository elements from outside the software engineering team. These elements and their
relationships are presented in Figure 1.

Central Server
Information
Center
User
Station
Manager Engineering
Capabilty
—— current links Softyvare :
——— fulure links Engineering Station

Figure 1l: Basic Repository System Model

Introduction 2

Definitions of Key Terms

In order to understand the processes described in the Guidebook and represented in the Repository
implementation, you should review the following terms and definitions. They will help you relate
this system to your previous experiences in libraries and software development. They are in an
order that permits sequential reading, rather than an alphabetic order. Additional terms used in the
Guidebook and the Repository system are defined in “Glossary” on page 10.

component

part

repository

repository system

depository

organized repository

filtered repository

certified repository

reuser

supplier

librarian

topic specialist

Introduction

A collection of related work products to be used as a consistent set of
information. Software work products can include specifications, design,
source code, machine code, reports, compilation units, code fragments and
other components. It is the primary object type that is the concern of a
repository. Also referred to as an asset, or resource.

An element of a component, such as design documents, source code, test
information, and data rights. While a part may be copied or browsed, when
stored in a repository it is always associated with a component.

An element of the software engineering environment in which software work
products and information about them are stored. Its primary purpose is
support of reuse. Also referred to as a reuse library.

An instance of the software engineering environment, including computer
hardware, operating systems, software tools, standards, and procedures that
together provide a complete repository capability. These capabilities include
acquiring, storing, managing, retrieving, and dlspensmg software work
products and information about them. A repository system may contain
several repositories, each dealing with a different problem domain.

A repository or part of a repository whose contents are deposited as is, with
few or no constraints. A depository is primarily a storage facility. Quality
and usability are unpredictable; the burden is on the user to find and evaluate
useful items.

A repository whose contents are documented and organized in a
comprehensive manner as components and parts. Finding, reviewing, and
extracting components are supported. The quality and usability remain
unpredictable.

A repository whose components are subjected to standards on form, content,
quality, and consistency. This is not a physical partition from the organized
repository, rather it is a documented higher level of confidence in an existing
organized component.

A repository whose components exhibit the highest level of confidence. A
certified component permits the proving of correctness in a solution that
reuses the component. Aspects of security, ownership, distribution, and user
set take on greater importance.

A person who reviews the contents of a repository and extracts components
for reuse. The common user of a repository. Also referred to as a user.

A person places components into a repository. Also referred to as a
contributor, or submitter.

A person who coordinates, organizes, and controls the contents of a
repository. Also referred to as a system administrator, database
administrator, or repository administrator. This person frequently provides
a first level help for other users.

A person who is responsible for the evaluation of components and
promoting them to the filtered of certified status. This person understands
the repository domain and has reviewed many of the components in the

component data file

filtering
certifying
gatekeeper

Introduction

repository. Also referred to as a domain expert, or technical consultant. This
person frequently provides a second level help for other users, via reference
from the librarian.

A file containing structured information about the component. The file is
prepared automatically, based on answers to questions in the on-line supply
process. It is the representation of the component when it is held in the
librarian’s ‘holding bin’. It is reviewed by the librarian and facilitates the
entry of the component into the repository. This file also forms the basis for
component interchange with other repositories.

The act of evaluating components and promoting them to filtered status.
The act of certifying components and promoting them to certified status.

An automated capability that facilitates component evaluation. It is usually
associated with entry to the repository and filtering, but may be used by
suppliers to review their components before submitting to the repository, or
as support for the certification process.

Repository User Roles

In using the Repository facilities and services, you and other individuals acting in various roles will
interact to accomplish reuse. This guidebook is organized on the basis of these roles. For each role,
references are made to the guidelines and procedures to be used in conducting your role. Each role
carries with it duties and responsibilities that combine to make the repository mission a success.

It is important to realize that the role is distinct from the individual or individuals who perform in
that role. It is possible, for instance, that a given role may be performed in whole or in part by a
single individual, by more than one individual, or by several individuals working together.
Individuals often perform several different roles when using the Repository.

Component Reuser

A reuser is a person who reviews the contents of a repository and extracts components for reuse
within their development project. The satisfaction of the reuser is the primary focal point of the
IBM STARS Repository. Through a large component supplies and effective retrieval mechanism
the Repository will increase the user’s degree of reuse.

Reuse is a simple, easy to accomplish process, but requires a confidence and commitment on the
part of the reuser. First, you establish a general requirement for some form of reusable component.
You express this need in general textual terms, such as ‘window system’, ‘list processor’, ‘memory
manager’, or ‘file browser’.

The next step is to access the Repository and invoke the component search facility. Using the
menu interface, you construct a query that is broad enough to encompass many candidate
components, but restrictive enough to eliminate obvious non-candidates. You then invoke the
query, review the returned candidate list, and select specific components for extraction. You may
want to browse the components from the candidate list to review the component before extraction.

In the extraction process, you will create copies of the selected components in your local directory
on the Repository system. You then copy them to your development system. Once in your
development system, you may compile the components and test them.

You may locate several components that meet your needs. You should consider extracting all of
them and attempt to build a set of alternative solutions. In doing assessment of the alternatives you
will develop a better understanding of your problem domain and will gain material for comparative
analysis.

In using the Repository, the reuser takes on some responsibility. The reuser must follow the code
of conduct as defined by the Repository administration [IBM 1460, IBM1470]. Reusers should not
redistribute components outside their project. If other people or projects want some of the
Repository content, they must establish their own contact into the Repository. When reusers
discover errors with a component or has problems with the Repository system, they should report
them through the on-line problem reporting mechanisms.

Repository User Roles 5

Component Supplier

A supplier is a person who contributes components to the Repository. All reusers are potential
suppliers, but a supplier is a reuser with a component that could be reused by another developer.
The supplier provides feedback into the reuse process by first extracting and subscribing to
components, and then by improving the component or developing new components and submitting
them to the Repository)

The supplier should be the author of the component, because the author will know the component
attributes and be able to fill out the supply forms accurately. The supplier will become the point
of contact for the component. Third party suppliers are not encouraged.

While it sounds simple, the supply process is complicated by data rights, ownership, incentives to
supply, and amount of effort to supply. The effort to supply is inversely proportional to the reuse
effort, and according to the economics of the process, it should be more difficult to supply than
reuse. The IBM STARS Repository has not resolved these issues, but has provided a rudimentary
facility in which to prototype the operational aspects of the issues.

The role of the supplier involves packaging and presenting work products for inclusion in the
STARS Repository. The work products should adhere to the STARS guidelines for reusability and
portability. You should pay particular attention to the issues of adaptation and tailoring of your
components. If you are developing software and want more information on the STARS coding
standards, refer to the STARS Reusability Guidelines]IBMCode]. You may also want to run your
code through the an Ada analysis tool, such as AdaMAT which is available on the IBM STARS
machine. The issues cf coding standards should not deter you from submitting a component. The
evaluation process of filtering will review the component for style and standards compliance. If you
believe your component is reusable, then you should submit it.

As a supplier, you are responsible for ensuring that the component information requirements are
satisfied prior to submitting work products to the Repository. This usually involves collection of
detailed information about the component to be supplied. You will have to transfer the component
parts to the Repository system. You then invoke the component supply facility and follow the
on-line directions.

You may want to submit a small test component using the on-line supply facility first. You should
take screen prints of the supply questions so that you can compile the required information off-line
before you start with a ‘real’ component. The Repository Librarian will recognize your ‘test’
component and not place it in the Repository.

Developers in the STARS project form a special class of suppliers. All STARS developers should
plan on becoming suppliers sometime during their development cycle. In adhering to the STARS
guidelines and contract requircments, the STARS developers will produce products that are
inherently ready for supply.

Repository Administration

Repository Manager

The repository manager owns and operates the Repository. The manager is responsible for
establishing and maintaining Repository procedures and policies. The manager has overall
responsibility for the Repository Librarian and Topic Specialists.

The manager has the following specific responsibilities:

Maintain system availability

Manage and review access control

Store STARS contract delivery items

Conduct system backup

Implement disaster recovery and vital records plans

Repository User Roles 6

Repository Librarian

The repository librarian coordinates, organizes, and controls the contents of the Repository. The
librarian acts as a database administrator. The librarian is available for help with reuse and supply
problems.

The librarian has two different paths to follow, depending on the type of item submitted to the
system. Figure 2 is a graphic illustration of these paths.

e Review submitted reusable material in the ‘holding bin” and place the material in the organized
repository, or

Copy STARS contract deliverables to the depository with minimum inspection.

Repository Supply
Component Holding Store in Organized
Component Supply Bin Repository
Depository Supply
Contract Send to Depository
Delivery REPOS /__
~y "

GAN
Figure 2: Repository Librarian Activities

When a component is placed in the ‘holding bin’, it is represented by a component data file. This
file is revicwed by the librarian and may modify the filc to bring the component into compliance
with entry criteria. This form of the component is also used when exchanging components with
other repositories.

Topic Specialist

The topic specialists review and evaluate components. They understand the repository domain and
have reviewed many of the components in the repository. They are responsible for the evaluation
of components and promoting them to fiitered or certified status. The topic specialist frequently
provides a second level help for other users, via reference from the librarian.

The act of evaluating and promoting components is referred to as ‘filtering’. Specific filtering
guidance is presented in the Appendix. The specialist uses an automated evaluation facility called
the ‘gatekeeper’. This facility 1s also available, as a prototype, for component developers and the
librarian to evaluate components within their part of the reuse process.

The specialist role supports quality assurance of work products that are received into the repository
by ensuring that the Repository reusability guidelines and portability guidelines are met. In
addition, the specialist contributes to Repository configuration management by assuring that the
work product 1s properly classified and properly inserted into the Repository structure.

Repository User Roles 7

References

There are many exciting successful reuse efforts completed or in-progress. All the major DoD
software agencies and contractors are involved. Of particular interest are the McDonnell Douglas
CAMP experiences [CAMP86] and the SEI Software Reuse Project [SEI89]. A literature search in
your project’s problem domain will turn up references appropriate for your project.

The following is a list of references in this Guidebook and its appendices in the order that they are
cited. References that are exclusively used in the reusability coding guidelines are contained in that
section only. The IBM STARS documents with reference tags of {IBMxxx] are available in
electronic form from the depository.

[IBMCode] IBM Systems Integration Division, STARS Reusability Guidelines, April 30,
1990.

[IBMUser] IBM Systems Integration Division, IBM STARS Repository User’s Guide,
April 30, 1990.

[RFP87] United States Department of Defense, Department of the Air Force,

STARS Competing Primes Lead Contracts Request For Proposal,
F19628-88-R-0011, November 5, 1987.

[IBM1540] IBM Systems Integration Division, Repository Guidebook (Draft), CDRL
Sequence No. 1540, September 14, 1989.

[SEI89] Software Engineering Institute, “Reuse: Where to Begin and Why,”
Affiliates Symposium, May 2-4, 1989,

[RSL87] Burton, B. A., and others, “The Reusable Software Library,” IEEE
Software, July 1987.

[IBM 1460} IBM Systems Integration Division, Draft Policies and Procedures, CDRL

Sequence No. 1460, January 19, 1990.

[IBM1470] IBM Systems Integration Division, Repository Operations and Procedures,
CDRL Sequence No. 1470, March 7, 1990.

[CANPS89)] McDonnell Douglas Astronautics Company, “Overview and Commonality
Study Results,”, Common Ada Missile Packages (CAMP),
AFATL-TR-85-93, May 1986.

|Peterson79) Peterson, A. S., “Coming to Terms with Terminology for Software
Reuse,” Reuse in Practice Workshop, 1989.

[IEEE729} IEEE, Standard Glossary of Software Engineering Terminology,
ANSI/IEEE STD 729-1983, IEEE Standards Board, Scptember 23, 1983.

[Webster88) Merriam-Webster Inc., Webster's Ninth New Collegiate Dictionary,

Springfield Mass., 1988.

[IBM1440] IBM Systems Integration Division, Practical Aspects of Repository
Operations, CDRL Sequence No. 1440, January 10, 1990.

References 8

b

[1BM380]

[IBM70]

[IBM110]

[1BM1580]
[TBM1320]
[IBM1600]

[CUAS9}

References

IBM Systems Integration Division, Consolidated Reusability Guidelines,
CDRL Sequence No. 0380, March 21, 1989.

IBM Systems Integration Division, Consolidated Technical Development
Plan for STARS Competing Prime Contractors, CDRL Sequence No. 0070,
November 11, 1989.

IBM Systems Integration Division, Environment Capability Matrix, CDRL
Sequence No. 0110, March 17, 1989.

IBM Systems Integration Division, Taxonomy Report, CDRL Sequence
No. 1580, January 19, 1990.

IBM Systems Integration Division, Quality Assurance/Configuration
Management Plan, CDRL Sequence No. 1320, October 20, 1989.

IBM Systems Integration Division, Version Description Document for the
IBM STARS Repository, CDRL Sequence No. 1600, January 31, 1990.

IBM, Common User Access Advanced Interface Design Guide, SC23-4582-0,
June 1989.

|

Glossary

The terms and definitions used in the IBM STARS Repository are listed in “Definitions of Key
Terms” on page 3. The following terms and definitions provide additional help in describing
software reuse. They are extracted from the “Partial Glossary for Software Reuse”, contained in a
paper by A. Spencer Peterson (SEI) titled “Coming to Terms with Terminology for Software
Reuse” [Peterson89).

The terms and definitions are taken from a draft update to ANSI/IEEE Std 729 (Glossary of SW
Terminology) [IEEE729], except where the term is marked with an (M) for Modified where inserted
text is enclosed in [], or with a (*) signifying a term that is not defined in the 1EEE draft. Other
comments are enclosed by { } and placed at the end of the definition.

abstract data type: A data type for which only the properties of the data and tlie operations to be
performed on the data are specified, without concern for how the data will be represented or how
the operations will be implemented.

abstraction: (1) A view of an object that focuses on the information relevant to a particular
purpose and ignores the remainder of the information. (2) The process of formulating a view as in

adaptation data(M): Data used to adapt a program [or component] to a given installation site or
to given conditions in its operational environment.

adaptation parameter(M): A variable [or placeholder] that is given a value [or other appropriate
information] to adapt a program [or component] to a given installation site or to given conditions
in its operational environment.

adaptive engineering(*): The process of modifying a system or component to perform its functions
in a different manner or on different data than was originally intended.

adaptive maintenance(M): Software maintenance performed to make a computer program [or
component] usable in a changed environment.

application-oriented language: A computer language with facilities or notations applicable
primarily to a single application area.

architecture: The organizational structure of a system or component.
artifact(*): Any product of the software development process.

asset(*): a set of reusable resources that are related by virtue of being the inputs to various stages
of the software life-cycle, including requirements, design, code, test cases, documentation, etc. {An
asset can be design and the contro} code for using other asscts in the library in a more powerful
way. Assets are the fundamental element in a reusable software library.}

component: One of the parts that make up a system. {A component is some useful portion of a
computer program. It may be subdivided into other components.}

control abstraction(*): (1) The process of extracting the essential characteristics of control by
defining abstract mechanisms and their associated characteristics while disrcgarding low-level details
and the entities to be controlled. (2) The result of the process in (1).

Glossary 10

SRR PN SV R IO

L PP PP S

data abstraction: (1) The process of extracting the essential characteristics of data by defining data
types and their associated functional characteristics and disregarding representational details. (2)
The result of the process in (1).

domain(*): The set of current and future systems/subsystems marked by a set of common
capabilities and data.

domain analysis(*): (1) The process of identifying, collecting, organizing, analyzing, and
representing a domain model and software architecture from the study of existing systems,
underlying theory, emerging technology, and development histories within the domain of interest.
(2) The result of the process in (1).

domain engineering(*): The construction of components, methods, and tools and their supporting
documentation to solve the problems of system/subsystem development by the application of the
knowledge in the domain model and software architecture.

domain model(*): A definiticn of the functions, objects, data, and relationships in a domain.

functional abstraction(*): (1) The process of extracting the essential characteristics of desired
functionality by defining its abstractly along with its associated behavioral characteristics and
disregarding low-level details. (2) The result of the process in (1).

independence(*): The ability of a component to be used with different compilers, operating
systems, machines and applications than those for which it was originally developed. Independence
is closely related to portability.

maintainability(*): The case of modifying a component, whether it be to meet particular needs or
to fix bugs.

master library: A software library containing master copies of software and documentation from
which working copies can be made for distribution and use. {This should be meticulously
maintained and controlled by a special group of reuse engineers and librarians.}

modularity(M): The degree to which a system, computer program [or code component] is
composed of discrete components such that a change to one component has minimal impact on
other components.

perfective maintenance(M): Software maintenance performed to improve the performance,
maintainability, or other attributes of a computer program [or component].

platform(*): Platform refess to the architecture for the system for which the product is intended
(hardware, operating system, and Ada compiler). Some products may be intended for several
different platforms. Platforms listed should also indicate whether they are host platforms, target
platforms, or both.

portability(*): The ability of an application or component to be used again in a different target
environment than the one it was onginally built for. The phrase target environment may be defined
broadly to include operating systems, machines, and applications. To be ported effectively,
components may need to be tailored to the requirements of the new target environment. See also
reusability and independence.

production library: A software library containing software approved for current operational use.

reliability(*): The extent to which a component performs as specified. A reusable component
performs consistently with repeated use and across environments (that is, operating systems and
hardware).

resource(*): Any software entity placed into a software library for purposes of reuse.

retirement(M): (1) Permanent removal of a system, component [or resource} from its operational
environment [or the master library.] (2) Removal of support from a operational system, component,
for resource}.

reusability(M): The degree to which [a] software [resource] can be used in more than one computer
program {or system, or in building other components or parts.] {Sce also portability.}

Glossary 11

reusable software(*): Software designed and implemented for the specific purpose of being reused.
reuse(*): The application of existing solutions to the problems of systems development.

reuse engineering(*): (1) The application of a disciplined, systematic, quantifiable approach to the
development, operation and maintenance of software where reuse is a primary consideration in the
approach. (2) The study of approaches as in (1). {The same definition as for ‘software engineering’
given in the IEEE standard except for the addition of the phrase beginning with ‘where’.}

software(M): Computer programs, [code components and other artifacts], procedures, and possibly
associated documentation and data pertaining to the operation of a computer system [or its
components].

software architecture(*): The packaging of functions and objects, their interfaces, and control to
implement applications in a domain.

software library(M): A controlled collection of software [resources] and related documentation
designed to aid in software development, use, [reuse], or maintenance.

software repository: A software library providing permanent, archival storage for software and
related documentation. {The key word is ‘“archival’. Also note the word ‘control’ is not
mentioned.}

software reuse(*): (1) The process of implementing new software systems and components from
pre-existing software. (2) The results of the process in (1).

specification(M): A document [or other media] that specifies, in a complete, precise, verifiable
manner, the requirements, design, behavior, or other characteristics of a system or component, and,
often, the procedures for determining whether or not these provisions have been satisfied.

tailorability(*): The ease of modifying a component to meet particular needs. It should be
distinguished from maintainability, which includes tailorability, but also includes the idea of
corrective maintenance (fixing bugs).

taxon(*): A group of resources constituting one of the categories in a taxonometric classification
for reusable software in one or more domains. {The plural is taxa.} {A taxonomic group or entity
[Webster88].}

taxonomy: The study of the general principles of scientific classification. [Webster88).

Glossary 12

\
|
i
\
\
\
\

Acronyms

The following is a list of acronym, abbreviation, and similar terms used in this Guidebook and its
appendices.
Acronym Meaning

AdaMAT an Ada Metric Analysis Tool by Dynamics Research Corp.
ADT abstract data type

ANSI American National Standards Institute

CDRL Contract Data Requirements List

ClUA Common User Access

DEC Digital Equipment Corporation

DoD (United States) Department of Defense

DOS Disk Operating System (for a personal computer)

DRC Dynamics Research Corporation

IBM International Business Machines

IEEE Institute of Electrical and Electronic Engineers

IR40 IBM STARS R-increment task for Repository Integration
Oracle a commercial relational database product

RFP Request for Proposal

SAA System Application Architecture

SAIC Science Applications Intemnational Corporation

SEI Software Engineering Institute

SGML Standard Generalized Markup Language

SQL Structured Query Language

STARS Software Technology for Adaptable, Reliable Systems
VAX a computer system from Digital Equipment Corporation
YMS a proprietary operating system for a VAX

Acronyms 13

Appendix A. Reusing Components

Repository Access

The IBM STARS Repository is accessed remotely from your system via-dial-up or Internet
connections. Complete user information is found in the IBM STARS Repository User’s Guide
[IBMUser]. This guide contains sections on

¢ Getting an account,

¢ Remote user system requirements,
e Making the connection, and

e System commands.

The policies and procedures governing your use of the system are documented in the Repository
Policies and Procedures [IBM1460] and the Repository Operations and Procedures {IBM1470]
documents. Additional information about the Repository System can be found in Repository
Operations [IBM1440}.

Repository Menu Application

The Repository application uses ‘a menuing system that is based on a rudimentary window
manager. To display the primary menu, enter “repos” at the system command prompt.

IBM STARS Team Repository

Component Search
Directory Search
Component Supply
Browse Current Catalog
Repository Tools
Repository Services
Suggestion Box

Problem Reporting)
Help ER S
Exit

Figure A-l: Primary Selection Menu

Each menu is composed of several options including an “Exit” option. Each option may be sclected
by moving the highlight bar to the option of interest (using the up and down arrow keys) and
pressing Enter. A second means of selecting an option is to simply enter the highlighted letter in
the option of interest.

Se veral of the options offer submenus. Return to the next higher level of the menu system is always
accomplished by pressing “x” or moving the highlight bar to “Exit” and pressing Enter.

Appendix A. Reusing Components 14

RO SN SO

P S SN SRS VRN

IBM STARS Team Repository

Compone
Directo Repository Tools
Compone
Reposit 1
Reposit| Ada Dev
Suggest Run SGM| Ada Development Tools
Problem|{ File Br

Help Add A P
Exit Add An AdaMAT
—-———| Problem| Edit Ada Source Code
Help Format Ada Source Code

Exit Check Ada Style
1 Count Ada Statements
Profile Ada Statements
Generate Compile Order
Compile Ada Programs
Problem Reporting
Help
Exit -—

/=,

. /
Figure A-2: Example of Submenus

The Repository application has context sensitive help information. By pressing “h” a full screen
of information will be displayed describing the capabilities of thé current menu.

Component Reuser Procedures

The primary Repository capability used by the reuser will be the component search facilities. At
first, these facilities will seem complicated, but after a few passes through the process you will
appreciate the interface and be able to locate components of interest.

There are two basic search facilities:

¢ Component Search - direct retrieval based on component attributes. Within the database there
are two primary types of components: software and document.

¢ Directory Search - selection of depository directory and then files, ordered by project and tasks.

The following figure presents the user interface search fields for the software attributes in the
database search facility.

Appendix A. Reusing Components 15

:
)
3
:
1
:
|
|
l
;
\
|
;

I

F6=Explain F7=Specify F8=Process Fl0=Reset selections Fll=eXit
Enhanced Repository Search Fields

........ fecmcm e e cccccc e e ccamc e cc e cGce e e e e e e s sccem et e —— e .- ————

Selected|SEARCH FIELD (Current Search Value)

________ e o e e e e e e e R o e e e e e e
] AUTHOR
| BOUNDING_INFO
IcLASS
| COMPONENT_STRUCTURE
| CONCURRENCY_INFO
| DATE_ENTERED
| DEFAULT_VERSION
| FUNCTION
| FUNCTIONAL_AREA
| ITERATION_INFO
| LANGUAGE
IMEDIA_MANAGEMENT
IMEDIUN
INAME
| OBJECT

* JOF_TYPE (Eq SOFTWARE)

Figure A-3: Software Search Fields User Interface

Appendix A. Reusing Components

Appendix B. Supplying Components

Component Supplier Procedures

The procedure to follow for contributing a component is quite simple; unfortunately, for large
components it takes a fair amount of time. The basic steps are:

1. Collect the information as defined in data requirements.

The data requirements are described in the following paragraphs. This information permits the
supply capability to prepare a component entry in the Repository database.

2. Copy the component parts into your user directory on the Repository.

You will have to define file names in your user directory that are meaningful for you and match
the component needs. These file names will be needed by the supply facility.

3. Invoke ‘Component Supply’ and follow the instructions.

The initial form used in collecting the required information is presented in Figure B-1.

IBHM TEAM STARS REPOSITORY - ASSET SUPPLY

name
asset_type
author
description
release_date
version
domain
function
object
organization
contact
keyword
content
language

Press %Return to select attribute.

A

Figure B-1: Component Supply Initial Form

Component Data Requirements

The following is a general list of of information that should be provided when a component is
submitted to the filtered repository. The specific requirements are contained in the ‘Component
Supply’ forms.

e Component Description

Appendix B. Supplying Components 17

R A e bt e h i o kms

Supplier/Ownership Information
Historical Information
Component Relationships
Taxonomic Attributes
Restrictions/Limits

Legal Information

User/Testing Instructions

The key piece of information is ownership. If you are the author, then most likely you are the
owner, or at least the organization you work for is the owner. It becomes more difficult when the
component is a mixture of your work and others. Ownership may not be easily established and
may take a legal opinion. It is even more difficult to establish ownership when you are supplying
a component from another source (referred to as 3rd party supply). This type of supply is
discouraged.

Component Coding Guidelines

Detailed guidelines for coding Ada in a reusable style are contained in the STARS Reusability
Guidelines [IBMCode]. These guidelines were originally published in the Consolidated Reusability
Guidelines [IBM380]. Essentially, the guidelines are the same as the guidelines which were
collectively established by the STARS prime contractors in the STARS Q-Increment. Some of the
original guidelines were modified for clarity and depth of definition. A few were eliminated due to
experiences and comments since they were published. The guidelines have also been organized to
match the metrics produced by AdaMAT.

The guideline document contains a checklist of the guidelines which is very helpful during code
development and review. This same checklist is applied to the component code during component
filtering by a Topic Specialist.

Coding style is distinct from code format. Code format effects readability but not reusability to any
great degree. Code format can be easily handled by formatting tools. Coding style addresses the
language elements you use to express the program design. It has an impact on reusability, especially
with regard to maintenance and program understanding. But even coding style is not as important
to reusability as compilation correctness and documentation completeness.

Col. Whitaker established the STARS program philosophy on coding style with the following note:

STARS does not wish to impose an excessive or restrictive style on the programmer. A sensible
attention to readability and portability should be sufficient guide.

STARS style recommendations have to be consistent with the widest variety of operations, including
the thousands of individual shops which may have local ideas, restrictions, and formats enforced by
local methods. STARS, therefore, is not restrictive without compelling reason, especially in those
areas where it possible to machine restructure the code to any desired style.

STARS sets no specific formatting requirements, as a matter of principle. The philosophy is that one
might expect to receive code from various organizations with different ways of doing things. The
government will pretty-print to Ada LRM style. The only style limitation is that one should not
attempt to encode information (e.g., into the case of identifiers, since Ada is case insensitive), or use
other non-Ada conventions. The government should be able to restructure and extract code
information that is processable by an Ada compiler.

STARS is trying to develop a software technology to be used by the DoD, not just to control a small
group of in-house programmers. The government should not over-specify those things it can easily
adapt. Style guidelines that impose more rigid formatting rules are oflicious pedantry, but very
common. Conventions like *_TYPE" may be used by some groups; STARS would not interfere, nor
would it attempt to impose them on anyone ¢lse.

Arbitrary restrictions to the full capability of Ada (such as unnecessary injunction against "use”) are
inappropriate. Each local shop may, for its own reasons, add additional restrictions, although
STARS would recommend against anything that would limit the expressiveness of Ada. Examples
of oppressive limitations include: no “function” in Ada PDL so it can be mapped to COBOL; no

Appendix B. Supplying Components 18

SRR X Y VRS

et

“if” nested under an “if”, because a tool was derived for a language without “elsif"; forbidding the use
of “use”, thereby denying much of Ada overloading; forbidding the “while” construct in favor of loops
with exit.

STARS is experimenting with using SGML encoding for program prologue information so it can be !

computer processed. This documentation technique is considered separable from “Ada style”, and
would be the subject of other guidelines.

Appendix B. Supplying Components 19

Appendix C. Evaluating Components

Repository Content Management

The Repository content is managed with three levels of component quality: organized, filtered,
certified.

Organized Level (Entry to Repository)

Requirements

To be admitted to the organized level of the repository, a component must meet certain minimal
data requirements and the information must be entered in the supply form. The component must
be classified within the standard taxonomy used by the repository.

Procedures

The repository librarian supervises the admission of a component into the repository.

Filtered Level

Requirements

A component attains the filtered level of the repository through the filtering process. The
component must meet more stringent data requirements and undergo analysis. The component
must be evaluated for reusability and portability. They must be assessed for their conformance to
the coding guidelines prescribed for reusable components.

Procedures

The librarian supervises the filtering process. Topic specialist are brought in to evaluate and analyze
components. Specific attributes of the component are determined and recorded. Automated tools,
such as AdaMAT, are used where appropriate.

Certified Level

Requirements

The certified level is attained when a component is determined to be “correct’. Currently, the
technology in this area is not refined and the requirements are not established.

Procedures

A component is certified through a process that includes analysis and testing. The component is
placed under strict configuration management following the certification.

Appendix C. Evaluating Components 20

Component Evaluation Filters

Filtering of components in the repository is the process of reviewing components (and their parts)
in order to establish a defined level of understanding about the component. For each filtering
process a component attribute or report is recorded and placed in the repository.

The current filters are described in the following paragraphs in the order of their application.
1. COMPILATION

To pass the compilation filter all the Ada parts of the component must be compiled by the
VAX Ada compiler. The success of this effort is recorded in a component attribute. A list
of ‘withs” outside of the component and a compilation order list must have been supplied when
the component was ‘organized’ or this filter will fail.

2. DOCUMENTATION

To pass the documentation filter, the existing documentation parts are read and evaluated by
a topic specialist. A report on the evaluation of the documentation may be written and added
to the component. The general filter is a pass or fail answer to the question, “Is the document
sufficient to support component reuse?”

The documentation will be subjectively evaluated for consistency, clarity, completeness, and
correctness. The documentation may be checked for spelling and grammar using automated
checkers. The automated checkers also permit metric evaluations, such as ‘grade level” and
‘word counts’.

If “tagged’ or pre-formatted documentation exist, it will be passed against the appropriate
processors. For example, SGML tagged documentation will be passed through an SGML
processor, and PostScript output will be sent to a PostScript printer.

3. METRICS

AdaMAT will be used to establish the metrics of a coding component. A report will be added
to the component that contains a roll-up of all the Ada parts. Reports may be prepared for
cach Ada part. While there is no specific criteria, components that display very low values
may be considered for removal from the Repository.

4. REUSEABILITY

This filter requires the application of the current STARS reusability coding guidelines
[IBMCode] to the component. It is a subjective review which can be augmented with
references to the AdaMAT metrics. The report is for the whole component.

There is no specific level, rather a pass or fail is recorded for each class of reusability guidelines.
The coding issues are subordinate to the overall issues of basic acceptability.

5. TESTING

To exercise this filter, the component must be executed using the testing parts in the
component. If the component has no testing parts, then it can’t pass this filter. In some cases
it may be reasonable to create testing parts, especially for good components where the supplier
didn’t contribute any testing parts. Ideally, the report is a test report with “successful” marked
against most cases.

6. SECURITY

This filter involves manual inspection for security problems. Each component part should be
vicwed on-line and in printed form. All parts are currently maintained in ASCII form. The
Repository doesn’t support reuse of executables. The review must be noted in the component
attribute.

7. CORRECTNESS

Appendix C. Evaluating Components 21

The notion of correctness permits a component to be classified as certified. There are several
approaches to this subject, which are being studied under STARS tasks. Currently this filter
is not available.

Topic Specialist Procedures

The skill and knowledge of the topic specialist is critical to the filtering process. The specialist must
judge components according to evaluation criteria in the filtering procedures. They are not
mechanical, but rather subjective. The main emphasis is on reviewing the component for its
potential reuse.

This process 1s weakly defined at this stage of the Repository iterative life cycle. As the system
matures, it is expected this area will receive more attention and process feedback.

An automation of some of the filtering process is captured in the Repository Gatekeeper facility.
This facility, while only an experimental prototype, does provide some useful notions of filtering.
It may be used by topic specialists or submitters to coordinate a component evaluation. The facility
is invoked by entering “"GATEKEEP” at the VAX command prompt. Figure C-1 is a screen print
from the execution of the Gatekeeper.

I To Do I
Parts of WINDOW MANAGER Checklist for WINDOW MANAGER
Process Checklist Browse Exit Help Pass Fail Save Exit Help
Type Name Cohesion
COMPONENT EXTENDED CHARACTER UT Coupling

COMPONENT LINKED LIST nting interfaces
COMPONENT N_ARY TREE P Tools ing dependencies
COMPONENT STRING BOUND Run Exit pendent components reusable

PACKAGE BODY
PACKAGE SPEC
SEP PKG BODY
SEP PKG BODY
SEP PKG BOLY

WINDOW MANAG
WINDOW MANAG
WINDOW MANAG
WINDOW MANAG
HIHDOW MANAG

Browse
AdaMat

ts
gram documentation

Review AdaMat Reportlanonymous types

Compile
SCML

use limited private types
constraints on numeric type

Figurs C-1: Gatekeeper Facility

Appendix C. Evaluating Components

22

Appendix D. IBM STARS Repository System
Repository Design

The design of the Repository followed the STARS basic integration model and functional interface
standards as defined in the Q-increment [IBM70]. A portability layer was defined that permits
migration of the system to other Ada environments. Concessions were made to non-portable
development involving the file system, the database manager SQL interface, and the database screen
interface aid. The following diagram expresses the general architecture.

Native Terminal Interface

4

1
ce-- Window Manager -

&> Selection Menu Driver

[S

Search Browse Copy

Submit Evaluate Catalog

Problems | |Suggestions Help

‘ s

SQL Interface Part-Node Mapping '

----- Database Manager f---{ Node Manager [&ar-"°
Native File System

Figure E-1: Repository Basic Architecture

Appendix D. IBM STARS Repository System 23

Repository System Facilities

The IBM STARS Repository runs on the following system:

Repository Capabilities

Hardware System

DEC microVAX 3600 with 32 megabytes of memory

1.2 gigabytes of disk storage

18 dial-in modems (16 at 2400 bps, 2 at 9600 bps)

A 16 at 2400 bps, MNP Level 5 error correction/compression
A 2at 9600 bps, MNP Level 5 error correction/compression
high speed link to Gaithersburg, 9.2 kbps

Software System

operating system: VAX/VMS Version 4.7
database management system: Oracle Version 5.1
electronic mail: VMS Mail Version 4.0

electronic conferencing: ANU NEWS Version 5.8
file transfer: Kermit-32 Version 3.2.077

Ada compiler: DEC Ada for VMS Version 1.4
Ada analysis: DRC AdaMAT Release 2.0

%-’ DEC microVAX 3600 “
32 Mb menory

Multi= | STARS
DECServer 500 2280 Dialup
Local Area Transport 18-~line
Rotary
Multi-
Tech
9600 .
Bridge
Repository Gaithersburg Ethernet
1.2 GigaByte

]
__/

4~ RAB2 disk drives
TU81Plus tape drive -

e ——
- K

Figure E-2: Repository System Configuration

ot

The following is a list of the capabilities of the IBM STARS Repository [IBM110]:

Support for Reuse Library

component search/select
A by hierarchy class
A by facet

A by attribute

Appendix D. IBM STARS Repository System

24

component browse (examine)
component copy (extract)
component tracking
component subscription
component problem reporting
component submit
component catalog generation
component catalog browse

¢ Support for Software Engineering

= Ada compilation
s Ada metric analysis
= SGML document preparation

¢ Support for General Information

directory search

file browse

electronic mail

electronic conferencing

file transfer (upload/download)
people search (scan)

system problem reporting
usage statistics browse

Repository Database

Information Model
The heart of the Repository is the database and the information model that it implements. The

IBM STARS Repository information model is based on a ‘component’ and its ‘parts’. The model
is currently being revised, but the following diagram of a recent model presents the basic concepts.

Appendix D. IBM STARS Repository System 25

FUNCTION
‘ame
ASSET-TYPE ookt DOMAIN
* name * name
« descnption 4 OBJECT « description
* name
4 + description c| PLATFORM
~-Synonym * platform_id
« descrption
v * lype
ASSET
* assel_id + description ORGANIZATION
» assettype (R} « granulanty (¢) * orgamization_id LEGEND
* name « version of (¢) | *© name
* author (R) « language * class * Key
* content « ownership €] - address R Reference
* releasedale + contract (R) bt 1 + phono (foreign key)
* version . siz0 « US_enlty ¢ conditional
* domain{R) < nghts
7 ot (R()“) + dapendency (R)(c) - (1)
* ovjec + hosi_hardware {R)(c) .
; organzalon (R) host_operatng-sysiem () ¢ M
+ contac! « target_hardware {R)(c) ~tbet > e (M:M)
+ suppher () + targel_operating_system (R}(c) CONTRACT
* keyword * contract_id
]] * number
) ‘ + pame
c « organization id (R |
; ¢ » conlact (R) V
PROBLEM EVALUATION i PEASON
* assel_id (R) * assel_id (R) * person id
« reporter (R) * author (R) e I8 person.
* repon_date * date name
+ content « content « organization_d (R)
« rasolver (R) oy *PhORC
« resolve_date ﬂ gl I =
+ user name
* : . Us-slaxu's
Figure E-3: Repository Information Model r '

e I { ‘7
Database Table Definitions

In using and administrating the repository, you will frequently need to know the permitted values
(or vocabulary) for particular component attributes. They are presented in this document for users
to develop an understanding of the type and depth of the table content. These values are stored in
the Repository database and are modified over time as appropriate. All processes in the Repository
system that use these values, retricve them from the current database. To view accurate actual
values, you must refer o the current database.

Part Types

The following is a list of PART TYPES available in the Repository.
DESCRIPTION Description of the component

HISTORY History of component including author, company, address, etc
DESIGN Design notes for component
REQUIREMENTS lList of modules or building blocks necessary to run
UNITS Fackage name of component
DOSFILE Name of DOS file in which the component's code is stored
RIGHTS Copyrights and release agreements
SPEC Ada specification for the component
BODY Ada body of code for the component
TEXT File containing textual characters, intended to be viewed
SGML File intended to be viewed via some SGML processor
Facets

The following is a list of FACETs and FACET TERMs in the Repository [IBM1580].

Appendix D. IBM STARS Repository System 26

FACET FACET TERM ALIASES
FUNCTION ANALYZE EVALUATE
CHECK VERIFY
DECODE TRANSLATE
EXAMINE DISPLAY, BROWSE
FORMAT TRANSFORM
MANAGE
MANIPULATE APPEND ,EXTRACT
MODIFY
USE

OBJECT DATES CALENDAR
EXTENDED_CHARS
FILES SOURCE, TEXT
LISTS
STACKS
STRINGS
TREES GRAPHS
WINDOWS

MEDIUM ARRAYS
FILES
RECORDS

SYSTEM_TYPE FILE_HANDLER
SCHEDULER
USER_INTERFACE

FUNCTIONAL_AREA DOS
SWE

SETTING SWE

As the repository grows and the contents become more diverse, the Facets, Terms, and Aliases will
be re-examined to be consistent in the meaning of terms and the scattering effect of limiting the
number of aliases used. If the composite terms begin to make too large a selection-set then remove
one or more aliases and select one for a new primary term. Components being added can then be
tied to the new, primary term and all existing compcnents that better fit the new term can be linked
to the new term.

Component Classes

The following is the high level list of the hierarchical component CLASS values in the Repository.
Each class several several levels of subclasses. This is the basic taxonomic structure of the
Repository content.

STARS PRIMES - INTERCHANGE
STARS Enhanced Repository Taxonomy
BOEING DELIVERABLES
IBM DELIVERABLES
UNISYS DELIVERABLES
STARS FOUNDATIONS (by Contractor)
NOSC_WIS (by Contractor)
SIMTEL20
CAMP (Common Ada Missle Packages)
SEME (S/W Dev. & Maint. Env.)
0 Etc.

HO®NMNADWN-O

Development Guidance

The Repository design and implementation followed several general sets of guidance. The
development followed the IBM STARS Quality Assurance and Configuration Management Plan
[IBM1320). To review the code work products refer to the in the code delivery of the STARS IR40
task {IBM1600].

Appendix D. IBV STARS Repository System 27

Typical User

The Repository was designed with the following typical user in mind.

e Little knowledge of the Repository host computer or operating system.
¢ No knowledge of the Repository database and approaches to database access.
e Reasonable knowledge of Ada.

User Interface

The basic reference for the Repository user interface is the IBM System Application Architecture
(SAA) - Common User Access (CUA) [CUAB89]. It defines the concepts of windows, title bars,
action bars, client areas, buttons, emphasis, and keyboard interactions. The CUA is generally
applied to pixal-graphic user interfaces, but we have generalized the to guidance to character
graphics because of the limited capabilities of the Repository system and the remote user systems.
The user interface also incorporates models and ideas found in character graphic tools commonly
used on VMS.

The following are some guidelines used to develop the user selection menus:

¢ Selection items should be based on the repository capability list.

¢ All menus should have “Report Problem”, “Help”, and “Exit”.

® Selection items should only exist in one place of the selection menu hierarchy (except for the
above items).

¢ Selection items not implemented should not be on the menu.

. fS_elc:ction items should be a ‘verb’ acting on a ‘noun’ (examples: ‘search directory’ and ‘browse
ile’,

¢ Selection items should be upper and lower case, with major words capitalized, and minor

words in all lower case.

The selection character should be the initial character of the ‘verb’.

The selection character should be emphasized and in upper case.

Submenus should be titled with the higher level menu selection item.

Help information should be context sensitive.

Function keys should not be used.

Common sense and user perception should prevail when these guidelines produce ‘funny’

situations.

Object Names

The naming of objects (files, tables, commands) has a significant effect on the management,
readability, and reusability of a system. For the Repository development, we have established the
following naming guidelines:

¢ Eliminate all file or directory names in code. Try to acquire the names from standard input.

¢ When it is not possible to eliminate imbedded file names, isolate the names in easy to locate
and modify places.

¢ Do not use dates, version numbers, CDRL numbers, or other project specific names. Name
items according to what the item does, and not according to where it is. Names like DEMO2,
STARS_PRIME, or REPOSS89 inhibit reuse. Names likce REPOS_SEARCH and
WINDOW_MANAGER are much better.

¢ Don’t use plurals for names (ic use COMPONENT table, not COMPONENTS table; use
COLOR type, not COLORS type).

Appendix D. IBM STARS Repository System 28

Index
A

abstract data type 10
abstraction 10
adaptation data 10
adaptation parameter 10
adaptive engineering 10
adaptive maintenance 10
administration 6
administrator 3

application-oriented language 10

architecture 10 :

artifact 10
asset 3, 10
C

certified repository 3, 20
certifying 4

coding guidelines 18
coding style 18
component 3, 10
component data file 4, 7
consultant 3
contributor 3

control abstraction 10

D

data abstraction 11
data requirements 17
depository 3

domain 11

domain analysis 11
domain engincering 11
domain model 11

E

F

filtered repository 3, 20 _;
filtering 4, 7, 22 !
filters 21

functional abstraction 11

G

gatekeeper 4, 7, 22

H

holding bin 4, 7

independence 11

L

librarian 3, 7

M

maintainability 11
manager 6
master library 11
modularity 11

0

organized repository 3, 20

|

part 3

perfective maintenance 11

platform 11
portability 11
production library 11

R

reliability 11
repository 2, 3
repository system 3
resource 3, 11
retirement 11
reusability 11
reusable software 11
reuse 1, 12

reuse engineering 12
reuse library 3
reuser 3, 5,15

Index

S

software 12

software architecture 12
software library 12
software repository 12
software reuse 12
specification 12
submitter 3

supplier 3,6, 17

T

tailorability 12
taxon 12

taxonomy 12

topic specialist 3, 7, 22

U

user 3, 14

30

e e o e s e 2 0 -

Abstract

This Guidebook provides high-level information for all users of the IBM STARS Repository. It describes
how to use the Repository system in the context of software reusc.

The Guidebook is organized according to specific roles that users perform when using the system. It
addresses the information needs of component reuscrs, component suppliers, and repository administrators.
This Guidebook defines

* How to use the IBM STARS Repository,

* Resources and capabilities of the Repository,

» Component standards for admission to and promotion within the Repository,

* Procedures for submission and usage of repository components,

* Processes involved in managing repository assets, and

» The reuse process in the context of the STARS repository.
The Guidebook is the key document in a suite of Repository guides. The other documents are the STARS
Reuseability Guidelines[IBMCode] and the IBM STARS Repository User’s Guide[IBMUser]. These docu-

ments were separated from the Guidebook for practical reasons, but they are required to make full use of the
Guidebook.

Abstract 2

—

Preface

The content of the Guidebook is tightly coupled to the IBM STARS Repository. It will be reviewed peri-
odically, incorporating the lessons learned from using the guidclines and procedures, and updating as the
Repository matures. In the short term, the Guidebook will help meet the practical needs of the IBM
STARS development teams. In the long term, it will serve as a baselinc clement in a more automated soft-
ware development environment.

The guidelines and procedures in the Guidebook apply to all IBM STARS team tasks. In particular, they
apply to Ada code and related documentation as it is admitted to and managed within the Repository. The
Guidebook serves as a starting point for development in future increments of the STARS project.

The term ‘Repository’ has developed several meanings within the softwarc development industry. In the
STARS project, the term has been associated with a machine, a facility, and an application. In general, this
Guidebook uses the latter meaning, also referring to the Repository as a Reuse Library.

This Guidebook was developed by the IBM Systems Integration Division, located at 800 North Frederick,

Gaithersburg, MD 20879. Questions or comments should be dirccted to the author, Robert W. Ekman at
(301) 240-6431, or to the IBM STARS Program Office.

Preface 3

IBM STARS Repository

Guidebook

July 2, 1990

Contract No. F19628-88-D-0032
Task IR40: Repository Integration

Delivered as part of:
CDRL Sequence No. 1550

Prepared for:
Electronic Systems Division

Air Force Systems Command, USAF
Hanscomb AFB, MA 01731-5000

Prepared by:

IBM Systems Integration Division
800 North Frederick
Gaithersburg, MD 20879

Contents

AbStract . . . L e e e 2
Preface e e 3
L Introduction e e e e 1-1
Reuse and the Repository e I-1
Definitions of Key Terms o .o i i e e e e 1-3
2. Repository User Roles e 2-1
Component Reuser e e e e 2-1
Component Supplier e e e 2-1
Repository Administration e e 2-2

Repository Manager it i e e e e e e 2-2

Repository Librarian e 2-3

Topic Specialist e e e 2-3
3 References e e e e 3-1
4 Glossary e e e e e e e 4-1
B ACTOMYIS e e e e e e e e e 5-1
Appendix A. Reusing Components e A-1
RepOSIOry ACCESS it i e e e e e e e e e A-1
Repository Menu Application i e e e A-l
Component Reuser Procedures it e e A-2
Appendix B. Supplying Components e B-1
Component Supplier Procedures o e B-1
Compouent Data Requirements e e B-1
Component Coding Guidelines oo e B-2
Repository Component Supplier Procedure o 0 e e B-3
Appendix C. Evaluating Components e e C-1
Repository Content Management ittt it e e C-1

Organized Level (Entry to Repository) o v i it i e e i e e ce e e e C-1

Filtered Level o e e e C-1

Certified Level o e e e e C-1
Component Evaluation Filters L. o i i i e e e C-2
Topic Specialist Procedures e e e s C-3
Appendix D. IBM STARS Repository Systemo o e D-1
Repository Designo i e e e e D-1
Repository System Facilitics i e i D-2
Repository Capabilitics i it e e D-3
Repository Database oottt e e e e e e D-3

Information Model L. e e e D-3

Database Table Definitions o it e e D-4
Development Guidance e e e D-6

Typical User i e e D-6

User Interface . . . v i ittt i i e e e e e e D-6

Contents

1. Introduction

Welcome to the IBM STARS Repository.

The IBM STARS Repository facilitates the distribution and sharing of software, documentation, and project
information within the STARS community [RFP87]. It also serves as a bridge between the STARS com-
munity and the software engineering industry.

In particular, the Repository

* stores and organizes designated material,

» provides capabilities for convenient searching and retrieval,

* provides capabilities for electronic dialogue (c.g., mail, conferencing, etc.) among its user community,
and

* provides 24-hour access for convenient delivery or copying of material over government or public elec-
tronic networks.

In addition, the Repository

* is an instance of the STARS softwarc engineering environment, and
* presents a vision of the software reuse process model.

The Repository supports

» software engineering through the software reuse model,
» project coordination through work product sharing and prototyping, and
» contract administration by archiving deliveries.

This Guidebook is your introduction to the IBM STARS Repository. It gathers in one place all the refer-
ences, guidelines, and procedures related to the operation and use of the Repository [IBM1540]. It will give
you an understanding of the nature and scope of the Repository.

After skimming this guidebook, you should usc the Repository system. Only through hands-on exercise of
the system will you become comfortable with it. A section in the Appendix of this document desciibes how
you can get an account and access the system.

The Repository is a maturing system with a component supply and problem correction process. You will
notice improvements in the Repository over what is described in this Guidebook. The component content
of the reuse library is dynamic. New components are added every week and cxisting components are being
reviewed.

You are encouraged to make the most out of the system and its features, and to report problems and sug-
gestions. The Repository support team is available and willing to help.

Reuse and the Repository

A repository is the primary support tool for software reuse and is a key clement in project life cycle inte-
gration SEI89. Without some form of a repository or reuse library, significant reusc on a software develop-
ment project is impossible. Reusc starts during carly phascs of the project [RS1.87]. You must set goals for
reuse and commit to not “reinvent the wheel.”

Your project’s problem definition and solution is rclated to a particular domain or set of domains, such as
‘software engincering’ or ‘air traffic control’. Likewise, repositorics are related to specific domains. To be

1. Introduction 1-1

o sk

Y S T,

PSR

successful with reuse, you must locate repositories that support the domains related to your project. You
must become familiar with the repository access and content as carly as possible.

The system engineers must define architectures with a view toward reuse. Requirements and specifications
must be defined recognizing the availability and capability of reusable components. Reuse must be specified.
If you start building without reuse specifications, you cannot take advantage of the significant quality and
cost benefits of software reuse.

During implementation you bring together the components from the repository. Large grain components
are most desirable. They will form the major parts of the solution. Small grain components are incorpo-
rated while editing and developing new system elements. During new code creation, you should keep open
access to the repository. This will allow you to interrogate the repository for candidate components as you
develop code.

As you complete your project or incremental release, you should consider putting key components from
your development into the repository. If you made modifications to repository components, then you
should return them as new versions. The reuse-repository model is a cyclic process, with supply and con-
sumption the driving forces.

The basic model of the Repository system consists of three user environments: the repository platform, the
software engineering environment, and the external casual user system. The repository platform consists of
two major elements: the Repository application and the user communication mechanisms. The software
engineering environment consists of a collection of tools coordinated through an object manager. The
external user system provides access to the repository clements from outside the software engineering team.
These elements and their relationships are presented in Figure 1.

Centrol Server
Informotion
Center
User
Stotion
H
\
N =
: \\ 'I H
: (1Y) :
: I" \‘\ :
E /' “\ :
Softwore
Manoger Engineering
cunent'hnks Software
"""" future links Engineering Stotion

Figure 1-1. Basic Repository System Model

I. Introduction 1-2

Definitions of Key Terms

In order to understand the processes described in the Guidebook and represented in the Repository imple-
mentation, you should review the following terms and definitions. They will help you relate this system to
your previous experiences in libraries and softwarc development. They are in an order that permits sequen-
tial reading, rather than an alphabetic order. Additional terms used in the Guidebook and the Repository
system are defined in 4, “Glossary” on page 4-1.

component

part

repository

repository system

depository

organized repository

filtered repository

certified repository

reuser
supplier

librarian

topic specialist

A collection of related work products to be used as a consistent set of information.
Software work products can include specifications, design, source code, machine code,
reports, compilation units, code fragments and other components. It is the primary
object type that is the concern of a repository. Also referred to as an asset, or
resource.

An element of a component, such as design documents, source code, test information,
and data rights. While a part may be copicd or browsed, when stored in a repository
it is always associated with a component.

An element of the software engineering cnvironment in which software work products
and information about them are stored. Its primary purpose is support of reuse. Also
referred to as a reuse library.

An instance of the software engineering cnvironment, including computer hardware,
operating systems, software tools, standards, and procedures that together provide a
complete repository capability. These capabilities include acquiring, storing, managing,
retrieving, and dispensing softwarc work products and information about them. A
repository system may contain several repositories, each dealing with a different
problem domain.

A repository or part of a repository whose contents are deposited as is, with few or no
constraints. A depository is primarily a storage facility. Quality and usability are
unpredictable; the burden is on the user to find and cvaluate useful items.

A repository whose contents are documented and organized in a comprehensive
manner as components and parts. Finding, reviewing, and cxtracting components are
supported. The quality and usability remain unpredictable.

A repository whose components are subjected to standards on form, content, quality,
and consistency. This is not a physical partition from the organized repository, rather
it is a documented higher level of confidence in an cxisting organized component,

A repository whose components exhibit the highest level of confidence. A certified
component permits the proving of correctness in a solution that reuses the component.
Aspects of security, ownership, distribution, and uscr sct take on greater importance.

A person who reviews the contents of a repository and extracts components for reuse.
The common user of a repository. Also referred to as a user.

A person places components into a repository. Also referred to as a contributor, or
submitter.

A person who coordinates, organizes, and controls the contents of a repository. Also
referred 1o as a system administrator, database administrator, or repository adminis-
trator. This person frequently provides a first level help for other users.

A person who is responsible for the evaluation of components and promoting them to
the filtercd of certified status. This person understands the repository domain and has
reviewed many of the components in the repository. Also referred to as a domain
cxpert, or technical consultant. ‘This person frequently provides a sccond level help for
other users, via reference from the librarian.)

1. Introduction 1-3

[T Ve

component data file

filtering
certifying
gatekeeper

A file containing structured information about the component. The file is prepared
automatically, based on answers to questions in the on-line supply process. It is the
representation of the component when it is held in the librarian’s ‘holding bin’. It is
reviewed by the librarian and facilitates the entry of the component into the repository.
This file also forms the basis for component interchange with other repositories.

The act of evaluating components and promoting them to filtered status.
The act of certifying components and promoting them to certified status.

An automated capability that facilitates component cvaluation. It is usually associated
with entry to the repository and filtering, but may be used by suppliers to review their
components before submitting to the repository, or as support for the certification
process.

1. Introduction 1-4

2. Repository User Roles

In using the Repository facilities and services, you and other individuals acting in various roles will interact
to accomplish reuse. This guidebook is organized on the basis of thesc roles. For each role, references are
made to the guidelines and procedures to be uscd in conducting your role. Each role carries with it duties
and responsibilities that combine to make the repository mission a success.

It is important to realize that the role is distinct from the individual or individuals who perform in that role.
It is possible, for instance, that a given role may be performed in whole or in part by a single individual, by
more than one individual, or by several individuals working together. Individuals often perform several dif-
ferent roles when using the Repository.

Component Reuser

A reuser is a person who reviews the contents of a repository and cxtracts components for reuse within their
development project. The satisfaction of the reuser is the primary focal point of the IBM STARS Reposi-
tory. Through a large component supplies and cffective retrieval mechanism the Repository will increasc the
user’s degree of reuse.

Reuse is a simple, easy to accomplish process, but requires a confidence and commitment on the part of the
reuser. First, you establish a general requirement for some form of reusable component. You express this
need in general textual terms, such as ‘window system’, ‘list processor’, ‘memory manager’, or ‘file browser’.

The next step is to access the Repository and invoke the component scarch facility. Using the menu inter-
face, you construct a query that is broad enough to encompass many candidate components, but restrictive
enough to eliminate obvious non-candidates. You then invoke the query, review the returned candidate list,
and sclect specific components for extraction. You may want to browse the components from the candidate
list to review the component before extraction.

In the extraction process, you will create copics of the selected components in your local dircctory on the
Repository system. You then copy them to your development system. Once in your development system,
you may compile the components and test them.

You may locate several components that mect your needs. You should consider extracting all of them and
attempt to build a set of alternative solutions. In doing assessment of the alternatives you will develop a
better understanding of your problem domain and will gain material for comparative analysis.

In using the Repository, the reuscr takes on some responsibility. ‘The reuser must follow the code of
conduct as defined by the Repository administration [IBM 1460, IBM1470]. Reusers should not redistribute
components outside their project. If other people or projects want some of the Repository content, they
must establish their own contact into the Repository. When reusers discover errors with a component or
has problems with the Repository system, they should report them through the on-line problem reporting
mechanisms. '

Component Supplier

A supplier is a person who contributes components to the Repository. All reusers are potential suppliers,
but a supplier is a reuser with a component that could be reuscd by another developer. The supplier pro-
vides feedback into the reusc process by first extracting and subscribing to components, and then by
improving the component or developing new components and submitting them to the Repository

2. Repository User Roles 2-1

I T GNPy

The supplier should be the author of the component, because the author will know the component attri-
butes and be able to fill out the supply forms accurately. The supplier will become the point of contact for
the component. Third party suppliers are not encouraged.

While it sounds simple, the supply process is complicated by data rights, ownership, incentives to supply,
and amount of effort to supply. The effort to supply is inversely proportional to the reuse effort, and
according to the economics of the process, it should be more difficult to supply than reuse. The IBM
STARS Repository has not resolved these issues, but has provided a rudimentary facility in which to proto-
type the operational aspects of the issues.

The role of the supplier involves packaging and presenting work products for inclusion in the STARS
Repository. The work products should adhere to the STARS guidelines for reusability and portability. You
should pay particular attention to the issues of adaptation and tailoring of your components. If you are
developing software and want more information on the STARS coding standards, refer to the STARS Reus-
ability Guidelines[IBMCode*rbrk.. You may also want to run your code through the an Ada analysis tool,
such as AdaMAT which is available on the IBM STARS machine. The issues of coding standards should
not deter you from submitting a component. The evaluation process of filtering will review the component
for style and standards compliance. If you believe your component is reusable, then you should submit it.

As a supplicr, you are responsible for ensuring that the component information requirements are satisfied
prior to submitting work products to the Repository. This usually involves collection of detailed informa-
tion about the component to be supplied. You will have to transfer the component parts to the Repository
system. You then invoke the component supply facility and follow the on-line directions.

You may want to submit a small tcst component using the on-linc supply facility first. You should take
screen prints of the supply questions so that you can compile the required information off-line before you
start with a ‘real’ component. The Repository Librarian will recognize your ‘test’ component and not place
it in the Repository.

Developers in the STARS project form a special class of suppliers. All STARS developers should plan on
becoming suppliers sometime during their development cycle. In adhering to the STARS guidelines and
contract requirements, the STARS developers will produce products that arc inherently ready for supply.

Repository Administration

Repository Manager

The repository manager owns and operates the Repository. The manager is responsible for establishing and
maintaining Repository procedures and policies. The manager has overall responsibility for the Repository
Librarian and Topic Specialists.

‘The manager has the following specific responsibilitics:

» Maintain system availability

» Manage and review access control

» Store STARS contract delivery items

» Conduct system backup

 Implement disaster recovery and vital records plans

2. Repository User Roles 2-2

Repository Librarian

The repository librarian coordinates, organizes, and controls the contents of the Repository. The librarian
acts as a database administrator. The librarian is available for help with reuse and supply problems.

The librarian has two different paths to follow, depending on the type of item submitted to the system.
Figure 2 is a graphic illustration of these paths.

» Review submitted reusable material in the ‘holding bin’ and place the material in the organized reposi-
tory, or

» Copy STARS contract deliverables to the depository with minimum inspection.

Repository Supply
Component | Holding Store in Organized
Component Supply Bin Databose Repository

Depository Supply

Contract Send to .
Deivary REPOS Deponitory

Figure 2-1. Repository Librarian Activitics

When a component is placed in the ‘holding bin’, it is represented by a component data file. This file is
reviewed by the librarian and may modify the file to bring the component into compliance with entry cri-
teria. This form of the component is also used when exchanging components with other repositorics.

Topic Specialist

'The topic specialists review and evaluate components. They understand the repository domain and have
reviewed many of the components in the repository. They are responsible for the evaluation of components
and promoting them to filtered or certified status. The topic specialist frequently provides a second level
help for other users, via reference from the librarian.

The act of evaluating and promoting components is referred to as ‘filtering’. Specific filtering guidance is
presented in the Appendix. ‘The specialist uses an automated cvaluation facility called the ‘gatekecper’.
This facility is also available, as a prototype, for component developers and the librarian to evaluate compo-
nents within their part of the reuse process.

The specialist role supports quality assurance of work products that are reccived into the repository by
ensuring that the Repository reusability guidelines and portability guidclines are met. In addition, the spe-

2. Repository User Roles 2-3

cialist contributes to Repository configuration management by assuring that the work product is properly

classified and properly inserted into the Repository structure.

2. Repository User Roles

2-4

3. References

There are many exciting successful reuse efforts completed or in-progress. All the major DoD software agen-
cies and contractors are involved. Of particular interest are the McDonnell Douglas CAMP experiences
[CAMP86] and the SEI Software Reuse Project [SEI89]. A literature search in your project’s problem
domain will turn up references appropriate for your project.

The following is a list of references in this Guidebook and its appendices in the order that they are cited.
References that are exclusively used in the reusability coding guidclines arc contained in that section only.
The IBM STARS documents with reference tags of [IBMxxx] are available in electronic form from the

depository.

[IBMCode]
[1BMUser]

[RFPS7]

[IBM1540]
[SEI89]
[RSL87]
[IBM1460]
[IBM1470]
[CAMPS9]
[Peterson79]
[IEEET729]
[Webster88]
[IBM1440]
[IBM380]

[IBM70]

[IBM110]

IBM Systems Intcgration Division, STARS Reusability Guidelines, April 30, 1990.

IBM Systems Integration Division, IBM STARS Repository User's Guide, April 30,
1990.

United States Department of Defense, Department of the Air Force, STARS Com-
peting Primes Lead Contracts Request For Praposal, I'19628-88-R-0011, November 5,
1987.

IBM Systems Integration Division, Repository Guidebook (Draft), CDRL Scquence
No. 1540, September 14, 1989,

Software Engincering Insiitute, “Reuse: Where to Begin and Why,” Affiliates Sym-
posium, May 2-4, 1989,

Burton, B. A, and others, “The Reusable Software Library,” IEEE Software, July
1987.

IBM Systems Integration Division, Draft Policies and Procedures, CDRL Sequence
No. 1460, January 19, 1990.

IBM Systems Integration Division, Repository Operations and Procedures, CDRL
Sequence No. 1470, March 7, 1990.

McDonnell Douglas Astronautics Company, “Overview and Commonality Study
Results,,” Common Ada Missile Packages (CAMP), AFATIL-TR-85-93, May 1986.

Peterson, A. S., “Coming to ‘T'erms with ‘T'erminology for Software Reuse,” Reuse in
Practice Workshop, 1989.

IEEL, Standard Glossary of Software Engincering I'erminology, ANSIJ/IEEE STD
729-1983, IEEE Standards Board, September 23, 1983,

Merriam-Webster Inc., Webster's Ninth New Collegiate Dictionary, Springficld Mass.,
1988.

IBM Systems Integration Division, Practical Aspects of Repository Operations,
CDRL Sequence No. 1440, January 10, 1990.

IBM Systems Integration Division, Consolidated Reusability Guidelines, CDRL
Sequence No. 0380, March 21, 1989,

IBM Systems Integration Division, Consolidated Technical Development Plan for
STARS Competing Prime Contractors, CDRI, Sequence No. 0070, November 11,
1989.

IBM Systems Integration Division, Environment Capability Matrix, CDRL, Sequence
No. 0110, March 17, 1989.

3. References 3-1

it ae et Ya - i BN [S

[IBM1580]

[IBM1320]

[IBM1600]

[CUAB89]

IBM Systems Integration Division, Taxonomy Report, CDRL Sequence No. 1580,
January 19, 1990.

IBM Systems Integration Division, Quality Assurance/Configuration Management
Plan, CDRL Sequence No. 1320, October 20, 1989.

IBM Systems Integration Division, Version Description Document for the IBM
STARS Repository, CDRI, Sequence No. 1600, January 31, 1990.

IBM, Common User Access Advanced Interface Design Guide, SC23-4582-0, June
1989.

3. References 3-2

4. Glossary

The terms and definitions used in the IBM STARS Repository are listed in “Definitions of Key Terms” on
page 1-3. The following terms and definitions provide additional help in describing software reuse. They
are extracted from the “Partial Glossary for Software Reuse,” contained in a paper by A, Spencer Peterson
(SEI) titled “Coming to Terms with Terminology for Software Reusc” [Peterson89].

The terms and definitions are taken from a draft update to ANSI/IEEE Std 729 (Glossary of SW Termi-
nology) [IEEE729), except where the term is marked with an (M) for Modified where inserted text is
enclosed in [], or with a (*) signifying a term that is not defined in the IEEE draft. Other comments are
enclosed by { } and placed at the end of the definition.

abstract data type: A data type for which only the properties of the data and the operations to be performed
on the data are specified, without concern for how the data will be represented or how the operations will be
implemented.

abstraction: (1) A view of an object that focuses on the information relevant to a particular purpose and
ignores the remainder of the information. (2) The process of formulating a view as in (1).

adaptation data(M): Data used to adapt a program [or component] to a given installation site or to given
conditions in its operational environment.

adaptation parameter(M): A variable fllor placeholder* that is given a value fllor other appropriatc informa-
tion* to adapt a program f{flor component* to a given installation sitc or to given conditions in its opera-
tional environment.

adaptive enginecring(*) The process of modifying a system or component to perform its functions in a dif-
ferent manner or on different data than was originally intended.

adaptive maintenance(M): Software maintenance performed to make a computer program fllor component*
usable in a changed environment.

application-oricnted language: A computer language with facilities or notations applicable primarily to a
single application area.

architecture: The organizational structure of a system or componcent.

artifact(*): Any product of the software development process.

assct(*): a sct of reusable resources that arc related by virtue of being the inputs to various stages of the
software life-cycle, including requircments, design, code, test cases, documentation, cte. {An asset can be
design and the control code for using other asscts in the library in a more powerful way. Assets are the

fundamental clement in a reusable software library.}

component: One of the parts that make up 2 system. {A component is some uscful portion of a computer
program. It may be subdivided into other components.)

control abstraction(*): (1) The process of extracting the essential characteristics of control by defining

abstract mechanisms and their associated characteristics while disregarding low-level details and the entities to
be controlled. (2) The result of the process in (1).

4. Glossary 4-1

data abstraction (1) The process of extracting the essential characteristics of data by defining data types and
their associated functional characteristics and disregarding representational details. (2) The result of the
process in (1).

domain(*) The set of current and future systems/subsystems marked by a set of common capabilities and
data.

domain analysis(*): (1) The process of identifying, collecting, organizing, analyzing, and representing a
domain model and software architecture from the study of existing systems, underlying theory, emerging
technology, and development histories within the domain of interest. (2) The result of the process in (1).

domain engineering(*) The construction of components, methods, and tools and their supporting documen-
tation to solve the problems of system/subsystem development by the application of the knowledge in the
domain model and software architecture.

domain model(*): A definition of the functions, objccts, data, and relationships in a domain.

functional abstraction(*): (1) The process of extracting the cssential characteristics of desired functionality by
defining its abstractly along with its associated behavioral characteristics and disregarding low-level details.
(2) The result of the process in (1).

independence(*): The ability of a component to be used with different compilers, operating systems,
machines and applications than those for which it was originally developed. Independence is closcly related
to portability.

maintainability(*): The easc of modifying a component, whether it be to meet particular needs or to fix
bugs.

master library: A software library containing master copies of software and documentation from which
working copies can be made for distribution and use. {This should be meticulously maintained and con-
trolled by a special group of reuse engineers and librarians.)

modularity(M): The degree to which a system, computer program fllor code component* is composed of
discrete components such that a change to one component has minimal impact on other components.

perfective maintenance(M): Software maintenance performed to improve the performance, maintainability,
or other attributes of a computer program [or component].

platform(*): Platform refers to the architecture for the system for which the product is intended (hardware,

operating system, and Ada compiler). Some products may be intended for several different platforms. Plat-
forms listed should also indicate whether they arc host platforms, target platforms, or both.

portability(*): The ability of an application or component to be used again in a different target cnvironment
than the one it was originally built for. The phrasc target environment may be defined broadly to include
operating systems, machines, and applications. 'T'o be ported cffectively, components may need to be tai-
lored to the requirements of the new target environment. Scc also reusability and independence.

production library: A softwarc library containing softwarc approved for current operational use.

reliability(*): The extent to which a component performs as specified. A reusable component performs
consistently with repeated usc and across environments (that is, opcrating systems and hardware).

resource(*) Any software entity placed into a software library for purposcs of reusc.

4. Glossary 4-2

retirement(M): (1) Permanent removal of a system, component [or resource] from its operational environ-
ment [or the master library.] (2) Removal of support from a operational system, component, [or resource].

reusability(M): The degree to which [a] software [resource] can be used in more than one computer
program [or system, or in building other components or parts.] {See also portability.)

reusable software(*): Software designed and implemented for the specific purpose of being reused.

reuse(*): The application of existing solutions to the problems of systems development.

reuse engincering(*): (1) The application of a disciplined, systematic, quantifiable approach to the develop-
ment, operation and maintenance of software where reuse is a primary consideration in the approach. (2)
The study of approaches as in (1). {The same definition as for ‘software engineering’ given in the IEEE

standard except for the addition of the phrase beginning with ‘where’.}

software(M): Computer programs, [code components and other artifacts], procedures, «nd possibly associ-
ated documentation and data pertaining to the operation of a computer system [or its components].

software architecture(*): The packaging of functions and objects, their intetfaces, and control to implement
applications in a domain.

software library(M): A controlled collection of software [resources] and related documentation designed to
aid in software development, use, [reuse], or maintcnance.

software repository: A software library providing permanent, archival storage for software and related doc-
umentation. {The key word is ‘archival”. Also note the word ‘control’ is not mentioned.}

software reuse(*): (1) The process of implementing new software systems and components from pre-existing
software. (2) The results of the process in (1).

specification(M): A documcent [or other media] that specifies, in a complete, precisc, verifiable manner, the
requircments, design, behavior, or other characteristics of a system or component, and, often, the procedures
for determining whether or not these provisions have been satisficd.

tailorability(*): The case of modifying a component to mceet particular nceds. It should be distinguished
from maintainability, which includes tailorability, but also includes the idea of corrective maintenance (fixing
bugs).

taxon(*): A group of resources constituting onc of the categories in a taxonometric classification for reusable
software in one or more domains. {The plural is taxa.} {A taxonomic group or entity [Webster88].)

taxonomy: The study of the gencral principles of scientific classification. [Webster88&rbrl..

4. Glossary 4-3

5. Acronyms

The following is a list of acronym, abbreviation, and similar terms used in this Guidebook and its appen-

dices.
Acronym
AdaMAT
ADT
ANSI
CDRL
CUA
DEC
DoD
DOS
DRC
IBM
IEEE
IR40
Oracle
RFP
SAA
SAIC
SEI
SGML
SQL
STARS
VAX
YMS

Meaning

an Ada Metric Analysis Tool by Dynamics Research Corp.

abstract data type

American National Standards Institute

Contract Data Requirements List

Common User Access

Digital Equipment Corporation

(United States) Department of Defensc

Disk Operating System (for a personal computer)
Dynamics Research Corporation

International Business Machines

Institute of Electrical and Electronic Engincers

IBM STARS R-increment task for Repository Intcgration
a commercial relational database product

Request for Proposal

System Application Architecture

Science Applications International Corporation
Software Engincering Institute

Standard Generalized Markup Language

Structured Query Language

Softwarc Technology for Adaptable, Reliable Systems

a computer system from Digital Equipment Corporation

a proprietary operating system for a VAX

5. Acronyms S-1

AppendixLA. Reusing Components

Repository Access

The IBM STARS Repository is accessed remotely from your system via dial-up or Internet connections.
Complete user information is found in the IBM STARS Repository User's Guide [IBMUser]. This guide
contains sections on

 Getting an account,

* Remote user system requirements,
* Making the connection, and

* System commands.

The policies and procedures governing your use of the system are documented in the Repository Policies and
Procedures [IBM1460] and the Repository Operations and Procedures [IBM1470] documents. Additional
information about the Repository System can be found in Repository Operations [IBM1440].

Repository Menu Application

The Repository application uses a menuing system that is based on a rudimentary window manager. To
display the primary menu, enter “repos” at the system command prompt.

IBM STARS Team Repository

Component Seorch
Directory Search
Component Supply
Browse Current Catelog
Repository Tools
Repository Services
Suggestion Box
Problem Reporting
Help

Exit

Figure A-1. Primary Sclection Menu

Each menu is composed of several options including an “Exit” option. Each option may be selected by
moving the highlight bar to the option of intcrest (using the up and down arrow keys) and pressing Enter.
A second means of sclecting an option is to simply cnter the highlighted letter in the option of interest.

Several of the options offer submenus. Retum to the next higher level of the menu system is always accom-
plished by pressing “x” or moving the highlight bar to “Exit” and pressing Enter.

Appendix A. Reusing Components A-1

IBM STARS Teom Repository
Compone !
%ern; :nt: Repository Tools
Reposit
Reposit 2
Suggest Ada Dev
ﬁ;l" blem | oun soM Ada Development Tools
Exit File Br
Add AP
Add An
Problem AdaMAT
Help Edit Ada Source Code
Exit Formot Ado Source Code
Check Ado Style
Count Ado Statements
Profile Ada Stotements
Generate Compile Order
Compile Ado Progroms
Problem Reporting
Help
Exit

Figure A-2. Example of Submenus

The Repository application has context sensitive help information. By pressing “h” a full screen of informa-
tion will be displayed describing the capabilities of the current menu.

Component Reuser Procedures

The primary Repository capability used by the reuscr will be the component scarch facilities. At first, these
facilitics will scem complicated, but aftcr a few passcs through the process you will appreciate the interface
and be able to locate components of intcrest.

There are two basic search facilities:

» Component Search - direct retricval based on component attributes. Within the databasc there are two
primary types of components: softwarc and document.

» Directory Search - selection of depository dircctory and then files, ordered by project and tasks.

The following figure presents the user interface scarch ficlds for the software attributes in the database search
facility.

Appendix A. Reusing Components A-2

F6=Explain F7=Specify FB=Process F10=Reset selections F11=eXit

o et e e i e e e o e T " - s At - o o

s s o s 0 s e v o

H

]

|

!

]

| BOUNDING_INFO

| CLASS

} COMPONENT_STRUCTURE
| CONCURRENCY_INFO
| DATE_ENTERED

! DEFAULT_VERSION
. FUNCTION

{ FUNCTIONAL_AREA

| ITERATION_INFO

i LANGUAGE

! MEDIA_MANAGEMENT

| MEDIUM

(]

L NAME

| OBJECT

| OF_TYPE (Eq SOFTWARE)

Figure A-3. Sofltware Search Fields User Interface

Appendix A. Reusing Components A=3

Appendix B. Sup;])Tying Components

Component Supplier Procedures

The procedure to follow for contributing a component is quite simple; unfortunately, for large components it
takes a fair amount of time. The basic steps are:

1. Collect the information as defined in data requirements.

The data requirements are described in the following paragraphs. This information permits the supply
capability to prepare a component entry in the Repository database.

2. Copy the component parts into your user directory on the Repository.

You will have to define file names in your user directory that are meaningful for you and match the
component needs. These file names will be needed by the supply facility.

3. Invoke &csq,Comporent Supply’ and follow the instructions.

The initial form used in collecting the required information is presented in Figure B-1.

IBM TEAM STARS REPOSITORY — ASSET SUPPLY

.....

nome
asset_type
author
description
relecse_dote
version
domain
function
object
organization
contoct
keyword
content
languoge

Press oReturn to gelect attribute.

Figure B-1. Component Supply Initial Form

Component Data Requirements

The following is a general list of of information that should be provided when a component is submitted to
the filtered repository. The specific requirements arc contained in the ‘Component Supply’ forms.

s Component Description
e Supplier/Ownership Information
* Historical Information

Appendix B. Supplying Components B-1

» Component Relationships
» Taxonomic Attributes

¢ Restrictions/Limits

¢ Legal Information

¢ User/Testing Instructions

The key piece of information is ownership. If you are the author, then most likely you are the owner, or at
least the organization you work for is the owner. It becomes more difficult when the component is a
mixture of your work and others. Ownership may not be easily established and may take a legal opinion. It
is even more difficult to establish ownership when you are supplying a component from another source
(referred to as 3rd party supply). This type of supply is discouraged.

Component Coding Guidelines

Detailed guidelines for coding Ada in a reusable style are contained in the STARS Reusability Guidelines
[IBMCode]. These guidelines were originally published in the Consolidated Reusability Guidelines
[IBM380]. Essentially, the guidelines are the same as the guidclines which were collectively established by
the STARS prime contractors in'the STARS Q-Increment. Some of th. ¢riginal guidelines were modified
for clarity and depth of definition. A few were climinated duc to expericnces and comments since they were
published. The guidelines have also been organized to match the metrics produced by AdaMAT.

The guideline document contains a checklist of the guidelines which is very helpful during code development
and review. This same checklist is applied to the component code during component filtering by a Topic
Specialist.

Coding style is distinct from code format. Code format effects readability but not reusability to any great
degree. Code format can be easily handled by formatting tools. Coding style addresses the language ele-
ments you use to express the program design. It has an impact on reusability, cspecially with regard to
maintenance and program understanding. But even coding style is not as important to reusability as compi-
lation correctness and documentation completencss.

Col. Whitaker established the STARS program philosophy on coding style with the following note:

STARS docs not wish to impose an excessive or restrictive style on the programmer. A sensible
attention to readability and portability should be sufficient guide.

STARS style recommendations have to be consistent with the widest variety of operations, including 1
the thousands of individual shops which may have local ideas, restrictions, and formats enforced by }
local methods. STARS, therefore, is not restrictive without compelling reason, cspecially in those }
areas wherc it possible to machine restructure the code to any desired style. !

STARS sets no specific formatting requircments, as a matter of principle. The philosophy is that
one might expect to reccive code from various organizations with different ways of doing things.
The government will pretty-print to Ada LRM style. The only style limitation is that one should
not attempt to encode information (c.g., into the casc of identificrs, since Ada is casc insensitive), or
use other non-Ada conventions. The government should be able to restructure and extract code
information that is processable by an Ada compiler.

STARS is trying to develop a software technology to be used by the DoD, not just to control a
small group of in-house programmers. The government should not over-specify those things it can
easily adapt. Style guidelines that impose more rigid formatting rules are officious pedantry, but very
common. Conventions like “_TYPE” may be used by some groups; STARS would not interfere,
nor would it attempt to impose them on anyonc else.

Appendix B. Supplying Components B-2

Arbitrary restrictions to the full capability of Ada (such as unnecessary injunction against “use”) are
inappropriate. Each local shop may, for its own reasons, add additional restrictions, although
STARS would recommend against anything that would limit the expressiveness of Ada. Examples
of oppressive limitations include: no “function” in Ada PDL so it can be mapped to COBOL; no
“if”’ nested under an “if,” because a tool was derived for a language without “elsif”’; forbidding the
use of “use,” thereby denying much of Ada overloading; forbidding the “while” construct in favor of
loops with exit.

STARS is experimenting with using SGML encoding for program prologue information so it can be
computer processed. This documentation technique is considered separable from “Ada style,” and
would be the subject of other guidelines.

Repository Component Supplier Procedure

The repository information model was modified during the R-extended development period. While the oper-
ational repository was being adapted this new modcl, component acquisition had to proceed. The solution
has to save components as tagged SGML files, and write a supply tool that would load the data base, using
the SGML file as input, as soon as the data base had been adapted to the new model. This is an interim
solution until the development of Release 2.5 of the Repository, with its new interactive, integrated Supply
Process, becomes operational during September of 1990.

The STARS repository supply tool works as follows. The supplier gencrates an SGMI.-tagged text file
defined by the Loadstar DTD (See Figure B-2). This file is referred to as an asset file. The supplicr pro-
vides the text associated with the tags in the asset file. For the “id” tags (termid, orgnzid, personid, cdrlid,
assetid), the supplier provides the ID value of an object that alrcady exists in the STARS repository. A
complete list of these objects, and their associated 1D values, can be obtaincd from the STARS repository
librarian. For the other tags, the supplier provides information derived from the asset. The supplier then
constructs a load file, containing a list of the names of the assct files to be loaded, and informs the STARS
repository librarian of its location. The librarian passes the load file as input to the STARS repository supply
tool. The supply tool reads the names of the assct files from the load file. This tool then reads each asset
file and inserts the corresponding asset into the STARS repository. Once all the assets have been inserted,
the supply tool generates a log file. The log file is an SGMI1.-tagged text file defined by the Loadlog DTD.

Figure B-2 defines the loadstar DTD and figure B-3 defines the loadlog DTD.

Appendix B. Supplying Components B-3

Appendix C. Evaluating Components

Repository Content Management

The Repository content is managed with threc levels of component quality: organized, filtered, certified.

Organized Level (Entry to Repository)

Requirements

To be admitted to the organized level of the repository, a component must meet certain minimal data
requirements and the information must be entered in the supply form. The component must be classified
within the standard taxonomy used by the repository.

Procedures

The repository librarian supervises the admission of a component into the repository.

Filtered Level

Requirements

A component attains the filtered level of the repository through the filtering process. The component must
meet more stringent data requirements and undergo analysis. The component must be evaluated for reusa-
bility and portability. They must be assessed for their conformance to the coding guidelines prescribed for
reusable components.

Procedures

The librarian supcrvises the filtering process. Topic specialist arc brought in to cvaluate and analyze compo-

nents. Specific attributes of the component arc determined and recorded. Automated tools, such as
AdaMAT, are used where appropriate.

Certified Level

Requirements

The certified Ievel is attained when a component is determincd to be ‘correct’. Currently, the technology in
this area is not refined and the requircments arc not cstablished.

Procedures

A component is certified through a process that includes analysis and testing. The component is placed
under strict configuration management following the certification.

Appendix C. Fvaluating Components C-1

Component Evaluation Filters

Filtering of components in the repository is the process of reviewing components (and their parts) in order
to establish a defined level of understanding about the component. For each filtering process a component
attribute or report is recorded and placed in the repository.

The current filters are described in the following paragraphs in the order of their application.
1. COMPILATION

To pass the compilation filter all the Ada parts of the component must be compiled by the VAX Ada
compiler. The success of this effort is recorded in a component attribute. A list of ‘withs’ outside of the

component and a compilation order list must have been supplied when the component was ‘organized’
or this filter will fail.

2. DOCUMENTATION

To pass the documentation filter, the existing documentation parts arc read and cvaluated by a topic
specialist. A report on the evaluation of the documentation may be written and added to the compo-
nent. The general filter is a pass or fail answer to the question, “Is the document sufficient to support
component reuse?”’

The documentation will be subjectively evaluated for consistency, clarity, completeness, and correctness.
The documentation may be checked for spelling and grammar using automated checkers. The auto-
mated checkers also permit metric cvaluations, such as ‘grade level’ and ‘word counts’.

If ‘tagged’ or pre-formatted documentation exist, it will be passed against the appropriate processors.
For example, SGML tagged documentation will be passed through an SGML processor, and PostScript
output will be sent to a PostScript printer.

3. METRICS

AdaMAT will be used to establish the metrics of a coding component. A report will be added to the
component that contains a roll-up of all the Ada parts. Reports may be prepared for each Ada part.
While there is no specific criteria, componcents that display very low values may be considered for
removal from the Repository.

4, REUSEABILITY

This filter requires the application of the current STARS reusability coding guidclines flIIBMCode*" to
the component. 1t is a subjective review which can be augmented with references to the AdaMAT
metrics. The report is for the whole component.

There is no specific level, rather a pass or fail is recorded for cach class of reusability guidclines. The
coding issues are subordinate to the overall issucs of basic acceptability.

5. TESTING
To cxercisc this filter, the component must be exccuted using the testing parts in the component. If the
component has no testing parts, then it can’t pass this filter. In some cascs it may be reasonable to

creatc testing parts, especially for good components where the supplicr didn’t contribute any testing
parts. Ideally, the report is a test report with “successful” marked against most cases.

6. SECURITY

This filter involves manual inspection for sccurity problems. Fach component part should be viewed
on-line and in printed form. All parts are currcntly maintained in ASCII form. ‘The Repository doesn’t
support reuse of executables. The review must be noted in the component attribute.

7. CORRECTNESS

Appendix C. Evalvating Components C-2

The notion of correctness permits a component to be classified as certified. There are several approaches
to this subject, which are being studied under STARS tasks. Currently this filter is not available.

Topic Specialist Procedures

The skill and knowledge of the topic specialist is critical to the filtcring process. The specialist must judge
components according to evaluation criteria in the filtering procedures. They are not mechanical, but rather !
subjective. The main emphasis is on reviewing the component for its potential reuse. ;

This process is weakly defined at this stage of the Repository iterative life cycle. As the system matures, it is
expected this area will receive more attention and process feedback.

An automation of some of the filtering process is captured in the Repository Gatekeeper facility. This
facility, while only an experimental prototype, docs provide some uscful notions of filtering. It may be used
by topic specialists or submitters to coordinate a componcent evaluation. The facility is invoked by entering

“GATEKEEP” at the VAX command prompt. Figurc C-1 is a scrcen print from the execution of the

Gatekeeper.
To Do
Porls of WINDOW MANAGER Checkiist for WINDOW MANAGER
Process Checklist Hrowse txit Help Poss Fol Sove Exit Halp
Type Name Cohesion

COMPONENT EXTENDED CHARAGTER UT Coupling
COMPONENT L NKED LIST nting interfaces
COMPONENT N_ARY TREE P Tools ing dependencies
COMPONENT STRING BOUND Run Exit pendent components reusable
PACKAGE BODY WINDOW MANAG Browse ta
PACKAGE SPEC WINDOW MANAG AdoMat gram cocumentation
SEP PKG BODY WINDOW MANAG Review AdaMol Repori anonymous types
SFEP PKG BODY WINDOW MANAG Comp'le use lirrited privale lypes
SEP PKG BODY WINDOW MANAG SGML conslrainls on numeric lype

Figure

C-1. Gatekeeper Facility

Appendix C. Evaluating Components C-3

Appendix D. IBM STARS Repository Systém

Repository Design

The design of the Repository followed the STARS basic integration model and functional interface standards
as defined in the Q-increment flIBM70“. A portability layer was defined that permits migration of the
system to other Ada environments. Concessions were made to non-portable development involving the file
system, the database manager SQL interface, and the database scrcen interface aid. The following diagram
expresses the general architecture.

Native Terminal Interface

= Window Manager - oo

b Selection Menu Driver E
Search Browse Copy
Submit Evaluate Catalog :
Problems Suggestions Help !
SQL Interface Part—Node Mapping

--| Dotabase Monager ~ f------- Node Manager .’;.:;"1"."!-.‘

Native File System

Figure D-1. Repository Basic Architecture

Appendix 1. IBM STARS Repository System D-1

Repository System Facilities

The IBM STARS Repository runs on the following system:

* Hardware System

— DEC microVAX 3600 with 32 megabytes of memory

— 1.2 gigabytes of disk storage

— 18 dial-in modems (16 at 2400 bps, 2 at 9600 bps)
— 16 at 2400 bps, MNP Level 5 crror correction/compression
— 2 at 9600 bps, MNP Level 5 error correction/compression

— high speed link to Gaithersburg, 9.2 kbps

* Software System

— operating system: VAX/VMS Version 4.7

— database management system: Oracle Version 5.1
— electronic mail: VMS Mail Version 4.0

— electronic conferencing: ANU NEWS Version 5.8
— file transfer: Kermit-32 Version 3.2.077

— Ada compiler: DEC Ada for VMS Version 1.4

— Ada analysis: DRC AdaMAT Release 2.0

Local
User

Terminols

DECServer 500

Local Area Transport

Repository
1.2 GigaByte

—

Ethernet
Bridge

]

Multi- | STARS

Tech Diolup

2400 18-line
Rotary

DEC microVAX 3600

e

==

32 Mb memory
4~RAB2 disk drives
TUB1 Plus tape drive

Figure D-2. Repository System Configuration

Appendix D. IBM STARS Repository System D=2

Repository Capabilities

The following is a list of the capabilities of the IBM STARS Repository [IBM110]:

Support for Reuse Library

component search/sclect

— by hierarchy class

— by facet

— by attribute

component browse (examine)
component copy (extract)
component tracking
component subscription
component problem reporting
component submit
component catalog generation
component catalog browse

Support for Software Engineering

Ada compilation
Ada metric analysis

— SGML document preparation

Support for General Information

— directory search

file browse

electronic mail

electronic conferencing

file transfer (upload/download)
people search (scan)

system problem reporting
usage statistics browse

Repository Database

Information Model

The heart of the Repository is the database and the information model that it implements. The IBM
STARS Repository information model is bascd on a ‘component’ and its ‘parts’. The model is currently
being revised, but the following diagram of a recent model presents the basic concepts.

Appendix 1. 1BM STARS Repository System D=3

Figure D-3. Repository Information Modcl

Database Table Definitions

FUNCTION
0 home
? deserpton DOMAIN
ASSET-TYPE S e
o name .
o description OBJECT o description
© nome
} o description ¢ [PLATFORM
2 hronym =1 o plotform_id
o description
o type
ASSET
o aeset_id o description ORGANIZATION
o oseet typs (R) o gronularity (c) o orgonization_id LEGEND
o name o version of (c) o nome
»ol o uthor (R) o longuage c | ocloes o Key
o content o ownership | © oddress R Reference
o relsose dote o contract (R) o phone (foreign key)
o version osim © US-entlty ¢ conditional
o domoin (R) o rights - (1:1)
o function (R) o depandency (R)c) (1M)
o object (R) o hoet_hordwore (R)c) c :
o orgonizition (R) © host_operating-system (R)Xc) CONTRACT e (M:M)
o contoct (R) © target_hordwore (R)c) o controct_id
o supplier (R) o target_operating_system (R)c) o numbar
o keyword o name
o organization_Id (R)
o contoet (R)
c 1¢c
PROBLEM EVALUATION PERSON
o osset_id (R) o oeset_id (R) o peraon_id
o reporer () o outhor (N) o rome
o report_date o dole o orgenizotion__id (R)
o content o content o phone
o revoiver (R) o network_oddress
0 rescive_dote * 0 User nome
o nationality
o US_status

In using and administrating the repository, you will frequently nced to know the permitted values (or vocab-
ulary) for particular component attributes. They arc presented in this document for users to develop an
understanding of the type and depth of the table content. These values arc stored in the Repository database
and are modified over time as appropriate. All processes in the Repository system that use these values,
retrieve them from the current databasc. ‘T'o view accurate actual valucs, you must refer to the current data-

base.

Appendix 1). IBM STARS Repository System

D-4

Part Types ' i

The following is a list of PART TYPES available in the Repository.
DESCRIPTION Description of the component

S S-SRI PN

HISTORY History of component including author, company, address, etc

DESIGN Design notes for component

REQUIREMENTS List of modules or building blocks necessary to run

UNITS Package name of component

DOSFILE Name of DOS file in which the component's code is stored

RIGHTS Copyrights and release agreements

SPEC Ada specification for the component

8oDY Ada body of code for the component

TEXT File containing textual characters, intended to be viewed ;
SGML File intended to be viewed via some SGML processor j
Facets

The following is a list of FACETs and FACET TERMs in the Repository MIBM1580%.

FACET FACET TERM ALIASES
FUNCTION ANALYZE EVALUATE
CHECK VERIFY]
DECODE TRANSLATE
EXAMINE DISPLAY ,BROWSE
FORMAT TRANSFORM
MANAGE
MANIPULATE APPEND, EXTRACT
MODIFY
USE
0BJECT DATES CALENDAR 1
EXTENDED_CHARS
FILES SOURCE, TEXT
LISTS
STACKS
STRINGS
TREES GRAPHS -
WINDOWS
MEDIUM ARRAYS
FILES
RECORDS

SYSTEM_TYPE FILE_HANDLER
SCHEDULER
USER_INTERFACE

FUNCTIONAL_AREA DOS
SWE

SETTING SWE

As the repository grows and the contents hecome more diverse, the Facets, ‘Terms, and Aliases will be re-
cxamined to be consistent in the meaning of terms and the scattering cffect of limiting the number of aliascs
used. If the composite terms begin to make too large a selection-sct then remove onc or more aliases and
select one for a new primary term. Components being added can then be tied to the new, primary term and
all existing components that better fit the new term can be linked to the new term.

Appendix . IBM STARS Repository System D=5

L_________AAAA? .

Component Classes

The following is the high level list of the hierarchical component CLASS values in the Repository. Each
class several several levels of subclasses. This is the basic taxonomic structure of the Repository content.

STARS PRIMES - INTERCHANGE
STARS Enhanced Repository Taxonomy
BOEING DELIVERABLES
IBM DELIVERABLES
UNISYS DELIVERABLES
STARS FOUNDATIONS (by Contractor)
NOSC_WIS (by Contractor)
SIMTEL20
CAMP {Common Ada Missle Packages)
SDME (S/W Dev. & Maint. Env.)
0 Etc.

= OO NMW WM = O

Development Guidance

The Repository design and implementation followed scveral general sets of guidance. The development fol-
lowed the IBM STARS Quality Assurance and Configuration Management Plan [IBM1320]. To review the
code work products refer to the in the code delivery of the STARS IR40 task [IBM1600].

Typical User

The Repository was designed with the following typical user in mind.

+ Little knowledge of the Repository host computer or operating system.
» No knowledge of the Repository database and approaches to database access.
« Reasonable knowledge of Ada.

User Interface

The basic reference for the Repository user interface is the IBM System Application Architecture (SAA) -
Common User Access (CUA) [CUAS9]. It defines the concepts of windows, title bars, action bars, client
arcas, buttons, emphasis, and keyboard interactions. The CUA is generally applicd to pixal-graphic user
interfaces, but we have generalized the to guidance to character graphics becausce of the limited capabilities of
the Repository system and the remote uscr systems. ‘The user interface also incorporates models and ideas
found in character graphic tools commonly used on VMS.

The following are some guidelines used to develop the user selection menus:

* Sclection items should be based on the repository capability list.

» All menus should have “Report Problem,” “llelp,” and “Ixit.”

« Selection items should only exist in one place of the selection menu hicrarchy (cxcept for the above
items).

¢ Selection items not implemented should not be on the menu.

* Selection items should be a ‘verb’ acting on a ‘noun’ (cxamples: ‘scarch directory’ and ‘browse file’.

* Sclection items should be upper and lower casc, with major words capitalized, and minor words in all

lower case.

The selection character should be the initial character of the ‘verb’,

The sclection character should be emphasized and in upper case.

Submenus should be titled with the higher level menu selection item.

Help information should be context sensitive.

Function keys should not be uscd.

Appendix D. 1BM STARS Repository System D=6

* Common sense and user perception should prevail when thesc guidelines produce ‘funny’ situations.

Object Names

The naming, of objects (files, tables, commands) has a significant effect on the management, readability, and

reusability of a system. For the Repository development, we have established the following naming guide-
lines:

* Eliminate all file or directory names in code. Try to acquire the names from standard input.

» When it is not possible to eliminate imbedded file names, isolate the names in easy to locate and modify
places.

S s

* Do not use dates, version numbers, CDRL numbers, or other project specific names. Name items
according to what the item does, and not according to where it is. Names like DEMO2,
STARS_PRIME, or REPOS89 inhibit reuse. Names like REPOS_SEARCI! and
WINDOW_MANAGER are much better.

* Don’t use plurals for names (ie use COMPONENT table, not COMPONENTS table; use COLOR
type, not COLORS type).

Appendix . IBM STARS Repository System D=7

Index

Index X-1

